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Abstract We consider a model where two adversaries can spend resources in acquir-
ing public information about the unknown state of the world in order to influence the
choice of a decision maker. We characterize the sampling strategies of the adversaries
in the equilibrium of the game. We show that as the cost of information acquisition for
one adversary increases, that person collects less evidence whereas the other adver-
sary collects more evidence. We then test the results in a controlled laboratory setting.
The behavior of subjects is close to the theoretical predictions. Mistakes are relatively
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infrequent (15%). They occur in both directions, with a higher rate of over-sampling
(39%) than under-sampling (8%). The main difference with the theory is the smooth
decline in sampling around the theoretical equilibrium. Comparative statics are also
consistent with the theory, with adversaries sampling more when their own cost is low
and when the other adversary’s cost is high. Finally, there is little evidence of learning
over the 40 matches of the experiment.

Keywords Experimental design · Search · Information acquisition · Adversarial
system

JEL Classification C91 · D83

1 Motivation

The literature on the economics of information has devoted considerable effort to
understand the strategic use of private information by agents in the economy. However,
less is known about the strategic collection of information, yet economic examples
of this situation abound. For example, lobbies and special interest groups spend sub-
stantial resources in collecting and disseminating evidence that supports their views.
The US legal system is based on a similar advocacy principle: Prosecutor and defense
attorney have opposite objectives, and they each search and provide evidence on a
given case in an attempt to tilt the outcome toward their preferred alternative. Finally,
firms reveal through advertising the characteristics of their products. This information
affects the fit between the product and the preferences of consumers. In this paper, we
build a theoretical model to understand the incentives of individuals to collect infor-
mation in strategic contexts. We then test in a controlled laboratory setting whether
subjects play according to the predictions of the theory.

We consider a simple theoretical framework where two agents with opposite
objectives (the adversaries) can acquire costly evidence. When both adversaries choose
to stop the acquisition of information, a third agent (the decision maker) makes a binary
choice. Formally, there are two possible events. Nature draws one event from a com-
mon prior distribution. The adversaries can then acquire signals that are imperfectly
correlated with the true event. Information affects the belief about the true event and
is public, in the sense that all the news collected by one adversary are automatically
shared with the other adversary and the decision maker. The mapping between the
information and the decision maker’s choice is deterministic and known: It favors the
interests of one adversary if the belief about the relative likelihood of states is below a
certain threshold, and it favors the interests of the other adversary if the belief is above
that threshold.

The main reason to assume public information is simplicity. Indeed, with private
acquisition of information, the incentives to acquire and transmit information are inter-
related. This complicates both the theoretical and the experimental analyses. Since the
existing literature has extensively studied the transmission of information, we choose
to focus instead on the acquisition of information. Also, for some applications such
as product advertising, one can argue that firms and consumers learn concurrently the
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fit between the characteristics of products revealed through advertising and the tastes
of consumers.

Opposite incentives imply that adversaries never acquire costly information
simultaneously. Indeed, when the current evidence implies that the decision maker
will favor the interests of one adversary, extra evidence can only hurt him so he will
not have incentives to acquire further information. However, if the current evidence
favors the other adversary, then he must trade-off the cost of acquiring more informa-
tion with the likelihood that such information will revert the decision. As the belief
becomes more and more adverse, the likelihood of reverting it decreases and the
expected sampling cost necessary to achieve a belief reversal increases, so the net gain
of accumulating evidence goes down. Overall, when the belief is mildly against the
interests of one adversary, that adversary acquires information. He keeps sampling up
to a point where either the belief is reversed, in which case the other adversary starts
the sampling process over, or else it has become so unfavorable that it is preferable
to give up. Solving this problem analytically is non-trivial, since the value function of
each adversary depends on the sampling strategy of both adversaries. Indeed, the value
of sampling for information in order to ‘send the belief to the other camp’ depends
on how intensely the other adversary will sample for information himself and there-
fore, how likely he is to ‘bring the belief back’. In Proposition 1, we determine the
best response strategies of each adversary as a function of the common belief about
the state and the cost of sampling for each adversary. We provide an analytical char-
acterization of the Markov equilibrium and show that the actions of adversaries are
strategic substitutes: When the cost of news acquisition for an adversary increases,
that adversary has fewer incentives to collect evidence, which in turn implies that the
other adversary has more incentives to collect evidence.

We then report an experiment that analyzes behavior in this information acquisition
game. We study variations of the game where each adversary may have a low or a high
unit cost of sampling. The structure of the game is therefore identical in all treatments,
but the equilibrium levels of sampling are not. Our first and main result is that the
empirical behavior in all treatments is close to the predictions of the theory both in
action space (Result 1) and in payoff space (Result 2). This conclusion is remarkable
given that the optimal stopping rule of an adversary is fairly sophisticated, it involves
strategic considerations about the other adversary’s choice, and it prescribes corner
choices (for a given belief, either never sample or always sample). To be more precise,
the optimal action of an adversary who is currently unfavored by the existing evidence
depends on whether the common belief is mildly adverse (in which case he should
sample) or strongly adverse (in which case he should stop), where the cutoff between
‘mildly’ and ‘strongly’ depends on the cost of sampling. We show that adversaries take
the decision predicted by theory 85% of the time (92% of the time when the theory
prescribes sampling and 61% of the time when the theory prescribes no sampling).
Furthermore, the best response to the empirical strategy of the other adversary is to
play the equilibrium strategy, which reinforces the idea that deviations from equilib-
rium play are small. Similar results are obtained when we analyze choices in payoff
space: Given their empirical behavior, an adversary loses less than 5% of the payoff
he would obtain if he best responded to the strategy of the other adversary.
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Second, we study in more detail the deviations observed in the data. The main
difference with the theoretical predictions is the smooth rather than sharp decline in
sampling around the theoretical equilibrium. We also show that mistakes occur in both
directions. In general, there are more instances of over-sampling than under-sampling.
Also, under-sampling occurs relatively more often when the adversary’s own cost is
low and over-sampling occurs relatively more often when the adversary’s own cost is
high (Result 3). Because the decline in sampling is smoother than it should, it is also
instructive to perform some comparative statics. The predictions of the theory are also
supported by the data in that dimension. First, the amount of sampling is decreasing
in the adversary’s cost of information acquisition. More interestingly, sampling by
one adversary is (weakly) increasing in the other adversary’s cost. This means that
subjects do not consider this game as an individual decision-making problem; they
realize the strategic substitutability of actions and play accordingly. These compara-
tive statics hold in the empirical analysis at the aggregate level using Probit regressions
on the probability of sampling and at the state-by-state level using mean comparisons
of sampling between cost pairs (Result 4). Finally, there is little evidence of learning
by the adversary unfavored by the existing evidence, possibly because the problem is
difficult, the feedback is limited and, most importantly, the choices are close to equi-
librium right from the outset. The adversary favored by the existing evidence makes
few mistakes at the beginning and learns to avoid them almost completely by the end
of the session (Result 5).

The paper is related to two strands of the literature, one theoretical and one exper-
imental. On the theory side, Brocas and Carrillo (2007) is to our knowledge the first
study that analyzes how an individual can affect the choices of others by selectively
deciding whether to acquire or avoid public information. The paper however focuses
on a very simple one-agent model with free information. It thus ignores the strategic
component of optimal sampling and the cost–benefit trade-off.1 In an independent
and concurrent research, Gul and Pesendorfer (2009) also extend the setting of Brocas
and Carrillo (2007) to include two agents with competing interests and a positive
cost of sampling. As in our case, the authors show the optimality of a cutoff strat-
egy and the strategic substitutability of the sampling cutoffs. The model is specified
using a more general and elegant continuous time Brownian motion process with
unknown drift. This formalization, however, is substantially more difficult both to
implement experimentally (choices must necessarily be revised at discrete intervals of
finite length) and to explain to subjects than ours.2 Gentzkow and Kamenica (2011) use
their previously developed methodology to analyze a still more general information
gathering and transmission problem by multiple agents with arbitrary states, signals,

1 Kamenica and Gentzkow (2010) approach the one agent, no-cost model of Brocas and Carrillo (2007)
from a mechanism design perspective and determine general conditions on the preferences of players such
that the agent with the capacity to collect information can benefit from this option.
2 Gul and Pesendorfer (2009) are able to show uniqueness of the equilibrium under the assumption that
only the subject behind in the game can acquire information. The paper is more thorough in that it also
studies the case of private acquisition of non-verifiable information, an issue that we ignore both in our
theory and our experimental setting.
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and preferences.3 Our paper shares also some similarities with the literature on tech-
nological races with strategic interactions and uncertainty (Harris and Vickers 1987;
Horner 2004; Konrad and Kovenock 2009). Finally, there is also an older literature on
games of persuasion (Matthews and Postlewaite 1985; Milgrom and Roberts 1986)
that studies the ex-ante incentives of firms to acquire verifiable information given the
ex-post willingness to reveal it to consumers depending on its content.

On the experimental side, there is an extensive literature on search for payoffs in
an individual decision-making setting (see e.g. Schotter and Braunstein 1981 in a
labor market context, Banks et al. 1997 in a two-arm bandit problem and the surveys
by Camerer 1995; Cox and Oaxaca 2008). A main finding in this literature is that
subjects stop the search process either optimally or excessively soon. Risk aversion
may account for the observed insufficient experimentation. Our paper extends that
literature to account for search in strategic contexts. The strategic, multiperson nature
of adversarial search substantially increases the complexity of the decision-making
problem relative to the individual decision-making counterpart. In particular, subjects
are expected to modify their stopping rule in response to a change in the rival’s payoff.
Surprisingly, we still observe a behavior that is close to the theory, and the compar-
ative statics with respect to the opponent’s cost also follow the predictions of the
theory. The main difference is that, with strategic sampling, there is an increase in
the rate of excessive experimentation, balancing the frequency of under-sampling and
over-sampling.4

Technological races have also been studied experimentally. Zizzo (2002) tests the
model of Harris and Vickers (1987) in the laboratory and finds substantial depar-
tures from the theoretical predictions. By contrast, Breitmoser et al. (2010) argue that
a Quantal Response extension of Markov Perfect Equilibrium explains rather well
the behavior of players in the infinite time horizon model of Horner (2004). Last,
the difficulty of individuals to perform Bayesian updating has been long noted both in
psychology and in economics. In individual decision contexts, Kahneman et al. (1982)
emphasize the mistakes in probabilistic assessments due to insufficient sensitivity to
priors, sample size, and accuracy of information among other factors. Charness and
Levin (2005) show that subjects are less likely to follow the Bayesian updating strategy
when it is consistent with a non-intuitive “switch when you win - stay when you lose”
heuristic than when it is consistent with a more natural “switch when you lose - stay
when you win” heuristic.

Two reasons can explain why the empirical behavior of subjects is close to the theory
in our experiment (and in the search problems discussed earlier) but not in other choice
under uncertainty contexts. First, subjects may be employing a simple heuristic which,
for our particular setting, coincides with the optimal choice. Second, search is ubiqui-
tous in our everyday lives, so individuals have developed intuitive but accurate ways
of solving this class of problems. We favor the second explanation, especially because

3 Arbitrary preferences are especially interesting because it allows the authors to compare cooperative and
non-cooperative outcomes.
4 Another difference, which is probably of second-order importance, is that our paper deals with search for
information rather than search for payoffs. According to Camerer (1995, p. 673), this could lead to different
conclusions even though both are formally similar. It does not seem to be the case in our setting.
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whichever method they are using applies both to individual situations and strategic
games.

The paper is organized as follows. In Sect. 2, we present the model and the main
theoretical proposition. In Sect. 3, we describe the experimental procedures. In Sect. 4,
we analyze the results, including aggregate behavior in action space and payoff space,
deviations from equilibrium as a function of the costs of both adversaries, compara-
tive statics (aggregate and state-by-state), and learning. In Sect. 5, we provide some
concluding remarks. The proof of the proposition is relegated to the appendix.

2 The model

2.1 The game

Consider a game with three agents. One agent is a decision maker (congress, judge,
consumer) who must undertake an action that affects the payoff of all three agents. The
other two agents are adversaries (lobbies, advocates, firms) who can collect costly evi-
dence about an event that has realized in order to affect the belief (hence, the action)
of the decision maker. We assume that all the information collected by adversaries
becomes publicly available, that is, agents play a game of imperfect but symmetric
information. Therefore, at any point in time, decision maker and adversaries share the
same belief about which event was realized. However, because adversaries have differ-
ent preferences over actions, they will also have different incentives to stop or continue
gathering evidence as a function of the current belief. Whether public information is
a realistic assumption or not depends very much on the issue under consideration. As
mentioned before, one reason to choose this assumption is to isolate the incentives for
information gathering. In that respect, adding private information would only pollute
the analysis.

To formalize the information collection process, we consider a simple model. There
are two possible events, S ∈ {B, R} (for “blue” and “red”). One event is drawn by
nature but not communicated to any agent. The decision maker must choose between
two actions, a ∈ {b, r}. His payoff depends on the action he takes and the event
realized. Formally, his expected payoff is as follows:

v(a) ≡
∑

S

Pr(S)v(a|S)

To preserve symmetry, we assume that the common prior belief is Pr(S) = 1/2. At
each stage, each adversary simultaneously decides whether to pay a (strictly positive)
cost in order to acquire a signal s ∈ {β, ρ}, which is imperfectly correlated with the
true event. Formally:

Pr[β | B] = Pr[ρ | R] = θ and Pr[β | R] = Pr[ρ | B] = 1 − θ

where θ ∈ (1/2, 1). Because the prior is common and all the information is public,
all agents have common posterior beliefs about the likelihood of each event. Also, in
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this simple framework, Bayesian updating implies that the posterior belief depends
exclusively on the difference between nβ , the number of β-signals, and nρ , the number
of ρ-signals accumulated by adversaries. Formally,

Pr(B | nβ, nρ) ≡ μ(n) = 1

1 + ( 1−θ
θ

)n

where n ≡ nβ − nρ ∈ Z. Thus, for the purpose of the posterior held, two opposite
signals cancel each other out. From now on, we will refer to n as the state. It is imme-
diate that μ(n + 1) > μ(n) for all n, limn→−∞ μ(n) = 0 and limn→+∞ μ(n) = 1.
We assume that from the decision maker’s viewpoint, there is one “correct” action
for each event: action b if the event is B and action r if the event is R. Formally,
v(b|B) > v(r |B) and v(b|R) < v(r |R). As a result, there will always exist a belief
μ∗ ∈ (0, 1) such that v(b) ≥ v(r) if and only if μ ≥ μ∗. This can be equivalently
expressed in terms of the state: There will always exist a state n∗ ∈ Z such that
v(b) ≥ v(r) if and only if n ≥ n∗.

2.2 Optimal stopping rule with two adversaries

Suppose the two adversaries can collect public evidence. For simplicity, suppose that
one adversary wants the decision maker to take action b independently of the event
realized, and the other adversary wants the decision maker to take action r also inde-
pendently of the event realized.5 From now on, we call them the blue adversary and
the red adversary, respectively. Without loss of generality, we normalize the payoffs of
the blue and red adversaries to be 1 and 0 when their most preferred and least preferred
action is taken by the decision maker.

Adversaries can acquire as many signals s ∈ {β, ρ} as they wish. Asymmetries in
the payoffs of adversaries are captured vía the cost of a signal. Formally, the cost of
each signal is cB for the blue adversary and cR for the red adversary, with cB � cR .
The timing is as follows. At each stage, adversaries simultaneously decide whether
to pay the cost of acquiring one signal or not. Any signal acquired is observed by
all agents (decision maker, blue adversary, and red adversary). Agents update their
beliefs and move to a new stage where adversaries can again acquire public signals.
When both adversaries decide that they do not wish to collect any more information,
the decision maker takes an action and the payoffs of all agents are realized.

In this setting, adversaries have opposite incentives and compete to provide
information. Remember that, given the decision maker’s utility described in Sect. 2.1,
there is a state n∗ such that v(b) > v(r) if n ≥ n∗ and v(b) < v(r) if n ≤ n∗ − 1.
We normalize his payoffs in such a way that n∗ = 0.6 It is then immediate that the

5 This assumption is excessively restrictive. What we need for the theory is a vector of preferences such that
the decision maker has conflicting interests with one adversary for beliefs in one compact set and conflicting
interests with the other adversary for beliefs in another compact set.
6 It could be that v(b) = v(r) for n = n∗. We assume that a strict inequality holds. This way, we do not
need to impose an ad-hoc tie-breaking rule (this point is more important for the experiment than for the
theory).
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blue adversary will never collect information if n ≥ 0, as evidence is costly and the
current belief already implies the optimal action from his viewpoint. For identical
reasons, the red adversary will never collect information if n ≤ −1 (from now on, we
will say that the blue adversary is “ahead” if n ≥ 0 and “behind” if n ≤ −1). Define
λ ≡ 1−θ

θ
(< 1), FB ≡ cB (1+λ)

1−λ
and FR ≡ cR(1+λ)

1−λ
. Although technically non-triv-

ial, we can characterize analytically the optimal sampling strategies under competing
adversaries. We focus on Markov equilibria where the state variable is n, the difference
between the number of ρ and β signals.

Proposition 1 The red adversary samples if and only if n ∈ {0, . . . , h∗ − 1} and the
blue adversary samples if and only if n ∈ {−l∗ +1, . . . ,−1}. The equilibrium cutoffs
are h∗ = arg max h �r

n(l∗, h) and l∗ = arg max l �b
n(l, h∗), where:

�r
n(l, h)= 1

1 + λn

[(
1+λl − FR(h+ 1)(1−λl)

) [
λn − λh

1 − λh+l

]
−FR(h − n)(1−λn)

]
,

�b
n(l, h)= 1

1 + λn

[(
1+λh − FB(l − 1)(1−λh)

) [
1 − λn+l

1 − λh+l

]
+FB(n+ l)(1−λn)

]
.

Adversaries sample more if their cost is lower. Also, the stopping thresholds are
strategic substitutes, so adversaries sample more if the cost of their rival is higher.7

Proof: See Appendix.

The idea is simple. Two adversaries with conflicting goals will never accumulate
evidence simultaneously. Indeed, for any given belief, one of the adversaries will be
ahead and therefore will not have incentives to collect information as it can only hurt
his interests. Suppose now that n ≥ 0. The red adversary (who is currently behind) can
choose to collect evidence until he is ahead (that is, until he reaches n = −1), in which
case either the other adversary samples or action r is undertaken yielding a payoff of
1. Alternatively, he can cut his losses, stop the sampling process, and accept action b
that yields a payoff of 0. As the difference between the number of blue and red draws
increases, the likelihood of reaching n = −1 decreases and the expected number of
draws in order to get to −1 increases, making the sampling option less interesting.
This results in an upper cutoff h∗ where sampling by the red adversary is stopped. A
symmetric reasoning when n ≤ −1 implies a lower cutoff −l∗ where sampling by the
blue adversary is stopped. Overall, when the event is very likely to be B the red adver-
sary gives up sampling, and when the event is very likely to be R the blue adversary
gives up sampling. For beliefs in between, the adversary currently behind acquires
evidence while the other does not. The strategies are graphically illustrated in Fig. 1.

7 These comparative statics are determined by taking derivatives in the profit functions �r
n(h, l) and

�b
n(h, l) (see Appendix). Obviously, there is a strong mathematical abuse in doing so, since h and l have

to be integers. To avoid this technical issue in the experiment, we simply determine for each cost pair
treatment the equilibrium cutoffs by creating a grid: For each integer l, we find the integer h that maximizes
�r

n(l, h) and for each integer h, we find the integer l that maximizes �b
n(l, h) and use these values to find

the equilibrium. Naturally, the same comparative statics hold.
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Fig. 1 Sampling strategies by blue and red adversaries

The comparative statics with respect to the adversary’s own payoffs are simple:
A lower cost implies a higher incentive to sample. More interestingly, the stopping
thresholds of adversaries, h∗ and l∗, are strategic substitutes. If the red adversary
decides to sample more (h∗ increases), the value for the blue adversary of reaching
n = 0 is decreased, since the red adversary is more likely to find evidence that brings
the belief back to n = −1. As a result, the blue adversary has less incentives to
sample (l∗ decreases). Combined with the previous result, it means that if the cost
of one adversary decreases, then the other adversary will engage in less sampling. A
main contribution of the experimental study will be to test empirically this strategic
substitutability of thresholds.

3 Experimental design and procedures

We conducted 8 sessions of the two-adversaries game with a total of 78 subjects.
Subjects were recruited by email solicitation. Sessions were conducted at The Social
Science Experimental Laboratory (SSEL) at the California Institute of Technology.
All interactions between subjects were computerized, using an extension of the open
source software package ‘Multistage Games.’8 No subject participated in more than
one session. In each session, subjects made decisions over 40 paid matches. For
each match, each subject was randomly paired with one other subject, with random
rematching after each match.

The experimental game closely followed the setting described in Sect. 2. At the
beginning of each match, each subject in a pair was randomly assigned a role as either
red or blue (from now on, we call them ‘red adversary’ and ‘blue adversary’ respec-
tively).9 The event was represented to the subject as an urn, red or blue, drawn by the
computer with equal probability. A red urn contained two red balls and one blue ball.
A blue urn contained one red ball and two blue balls. Subjects knew the number of red
and blue balls in each urn but did not observe which urn was selected by the computer.
That is, the true event remained unknown to subjects.

Each adversary had to decide simultaneously whether to draw one ball from the
urn or not (the sampling strategy). Because there were twice as many red balls than
blue balls in the red urn and twice as many blue balls than red balls in the blue urn,

8 Documentation and instructions for downloading the software can be found at http://multistage.ssel.
caltech.edu.
9 In the experiment, we used neutral terminology: participant in the ‘blue’ role, participant in the ‘red’
role, etc.
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the correlation between signal and event (ball color and urn color) was θ = 2/3.
The cost of drawing a ball for the red and blue adversaries, cR and cB respectively,
was known but varied on a match-by-match basis as detailed elsewhere. If one or
both adversaries drew a ball, then both adversaries observed the color(s) of the ball(s)
drawn. The ball was then replaced in the urn.10 If at least one adversary drew a ball,
they both moved to another round of ball drawing. The process continued round after
round until neither of them chose to draw a ball in a given round. At that point, the
match ended, and the computer allocated a payoff to each adversary which depended
exclusively on the color of the balls drawn by both adversaries.11 More precisely, if
the difference between the number of blue and the number of red balls drawn was 0
or greater, then the blue adversary earned a high payoff and the red adversary earned
a low payoff. From now on, we will say that the blue adversary “won” the match and
the red adversary “lost” the match. If the difference was −1 or smaller, then the blue
adversary lost the match and earned a low payoff, whereas the red adversary won the
match and earned a high payoff. From these earnings, adversaries had their ball draw-
ing costs (number of balls they drew times cost per draw) subtracted. Subjects then
moved to another match where they were randomly rematched, randomly reassigned
a role, and a new urn was randomly drawn.

There are a few comments on the experimental procedures. First, we wanted to
minimize (though not necessarily eliminate at all costs) the likelihood that an adver-
sary earned a negative payoff in a given match once the costs were subtracted, because
this could result in loss aversion effects. We therefore set the payoffs of winning and
losing a match at 150 points and 50 points, respectively, with the costs of sampling
being 3 or 13 for each adversary.12 Second, as in the theory section, roles were not
symmetric. We gave an initial advantage to the blue adversary in order to implement a
simple, deterministic, and objective rule for the case n = 0. Finally, we computerized
the role of the decision maker to make sure that sampling did not depend on (possibly
incorrect) beliefs about the decision maker’s choice.

At the beginning of each session, instructions were read by the experimenter stand-
ing on a stage in the front of the experiment room, which fully explained the rules,
information structure, and computer interface.13 After the instructions were finished,
two practice matches were conducted, for which subjects received no payment. After
the practice matches, there was an interactive computerized comprehension quiz that
all subjects had to answer correctly before proceeding to the paid matches. Subjects
then participated in 40 paid matches, with opponents and roles (red or blue adver-
sary) randomly reassigned and urns randomly drawn at the beginning of each match.

10 Even though the decision of drawing a ball within a round was taken simultaneously, the balls were
drawn with replacement. That is, adversaries always had 3 balls to draw from (this point was clearly spelled
out in the instructions).
11 As shown in Proposition 1, if the adversary unfavored by the evidence accumulated so far prefers not
to draw a ball, then he has no incentives to start the sampling process afterward. Thus, ending the match
if no adversary draws a ball in a given round shortens the duration of the experiment without, in principle,
affecting the outcome.
12 The exchange rate was 200 points = $1.00. Notice that in the theoretical analysis, the payoff of losing
was normalized to zero. Rescaling payoffs has no consequences for the theory.
13 A sample copy of the instructions can be found in the online supplementary material.
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Table 1 Session details
Session (date) # Subjects Costs (cR , cB ) in matches

1–10 11–20 21–30 31–40

1 (06/03/2008) 8 (3,3) (3,13) (13,3) (13,13)

2 (06/04/2008) 10 (3,3) (13,13) (3,13) (13,3)

3 (06/09/2008) 10 (3,13) (3,3) (13,3) (13,13)

4 (06/09/2008) 10 (3,13) (13,3) (13,13) (3,3)

5 (06/11/2008) 10 (13,3) (3,13) (13,13) (3,3)

6 (06/12/2008) 10 (13,3) (13,13) (3,3) (3,13)

7 (06/16/2008) 10 (13,13) (3,3) (3,13) (13,3)

8 (06/16/2008) 10 (13,13) (13,3) (3,3) (3,13)

Table 2 Markov equilibrium
(cR , cB ) −l∗ h∗

(3, 3) −3 3

(3, 13) −2 3

(13, 3) −4 1

(13, 13) −2 1

The design included four blocks of ten matches, where the cost pairs (cR, cB) were
identical within blocks and different across blocks. The four cost pairs were the same
in all sessions. However, to control for order effects, the sequences were different. Sub-
jects were paid the sum of their earnings over all 40 paid matches, in cash, in private,
immediately following the session. Sessions averaged one hour in length, and subject
earnings averaged $25. Table 1 displays the pertinent details of the eight sessions.

4 Results

4.1 Aggregate sampling frequencies

Using Proposition 1, we can compute the theoretical levels of sampling as a function
of the costs of both adversaries. This can serve as a benchmark for comparison with the
empirical behavior. Recall that h∗ and −l∗ correspond to the states where the red and
blue adversaries stop sampling, respectively (see Fig. 1). These equilibrium cutoffs
are reported in Table 2.

The first cut at the data consists of comparing the empirical probabilities of sam-
pling by the blue and red adversaries as a function of the state n, the difference between
the number of blue draws and the number of red draws. Table 3 shows the empirical
sampling frequencies and the equilibrium predictions (reported in Table 2) for each
cost pair and pooling all eight sessions together. A graphical representation of the
same data is provided in Fig. 2.14

14 Although the empirical state space is n ∈ {−6, . . . , 7}, in Table 3, Fig. 2 and in the mean comparison
in Table 10, we restrict the analysis to n ∈ {−4, . . . , 4}, because there are few observations (between 0
and 15) for choices in states outside this range. All the other tables and statistical analyses are based on the
entire data set.
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Table 3 Sampling frequencies (standard errors clustered at the individual level in parentheses)

n (blue draws–red draws) −4 −3 −2 −1 0 1 2 3 4

(cR , cB ) = (3,3)

# observations 51 158 266 439 791 407 245 98 18

Pr[red sampling—theory] 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00

Pr[red sampling—empirical] 0.02 0.03 0.01 0.12 1.00 0.92 0.62 0.30 0.33

(standard error) (0.02) (0.02) (0.01) (0.03) (0.00) (0.02) (0.04) (0.07) (0.13)

Pr[blue sampling—theory] 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

Pr[blue sampling—empirical] 0.45 0.45 0.77 1.0 0.14 0.01 0.00 0.00 0.00

(standard error) (0.10) (0.06) (0.04) (0.00) (0.03) (0.01) (0.00) (0.00) (0.00)

(cR , cB ) = (3,13)

# observations 13 58 223 394 731 394 216 88 26

Pr[red sampling—theory] 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00

Pr[red sampling—empirical] 0.15 0.10 0.02 0.09 0.99 0.94 0.67 0.48 0.39

(standard error) (0.16) (0.08) (0.01) (0.02) (0.00) (0.02) (0.04) (0.07) (0.10)

Pr[blue sampling—theory] 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Pr[blue sampling—empirical] 0.54 0.24 0.31 0.92 0.06 0.00 0.00 0.00 0.00

(standard error) (0.21) (0.09) (0.05) (0.02) (0.02) (0.00) (0.00) (0.00) (0.00)

(cR , cB ) = (13,3)

# observations 43 124 228 363 624 287 94 7 1

Pr[red sampling—theory] 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Pr[red sampling—empirical] 0.02 0.01 0.00 0.04 0.93 0.52 0.11 0.14 0.00

(standard error) (0.02) (0.01) (0.00) (0.02) (0.02) (0.04) (0.04) (0.15) n/a

Pr[blue sampling—theory] 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

Pr[blue sampling—empirical] 0.37 0.52 0.87 1.00 0.06 0.00 0.00 0.00 0.00

(standard error) (0.11) (0.06) (0.03) (0.00) (0.02) (0.00) (0.00) (0.00) n/a

(cR , cB ) = (13,13)

# observations 5 40 171 301 607 259 96 10 3

Pr[red sampling—theory] 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Pr[red sampling—empirical] 0.00 0.00 0.00 0.02 0.97 0.55 0.15 0.40 0.67

(standard error) (0.00) (0.00) (0.00) (0.01) (0.01) (0.05) (0.06) (0.20) (0.33)

Pr[blue sampling—theory] 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Pr[blue sampling—empirical] 0.80 0.13 0.33 0.97 0.09 0.00 0.00 0.00 0.00

(standard error) (0.25) (0.07) (0.05) (0.01) (0.03) (0.00) (0.00) (0.00) (0.00)

Despite the data being rather coarse, it allows us to draw two main conclusions.
First, adversaries understand the fundamentals of the game. Indeed, the theory pre-
dicts that both adversaries should never simultaneously draw balls. It is a dominated
strategy for blue to draw when n ≥ 0 and for red to draw when n ≤ −1. Among the
7,879 observations where both adversaries had to simultaneously choose whether to
sample, only in 4.8% of the cases the adversary ahead in the game did draw a ball.
Furthermore, two-thirds of these mistakes correspond to a blue adversary drawing

123



Information gatekeepers 661

Fig. 2 Sampling frequencies by state and cost treatment

Table 4 Proportion of
equilibrium behavior when
adversary is behind (standard
errors clustered at the individual
level in parentheses; number of
observations in brackets)

All states behind Marginal states

Theory is draw 0.920 (0.007) 0.870 (0.013)

[6,130] [2,404]

Theory is no draw 0.609 (0.029) 0.549 (0.031)

[1,819] [1,156]

All 0.849 (0.008) 0.766 (0.010)

[7,949] [3,560]

when n = 0. These small mistakes may be partly due to a misunderstanding of the
tie-breaking rule, since the red adversary was significantly less likely to draw when
n = −1. Furthermore and as we will see in Sect. 4.5, these mistakes were greatly
reduced over the course of the experiment. For the rest of the analysis and except
otherwise noted, we will focus on the sampling strategy of the adversary behind in the
game (red when n ≥ 0 and blue when n ≤ −1).

Second, sampling behavior is reasonably close to equilibrium predictions. Using
Table 3, we can determine the number of instances where the adversary behind in the
game played according to the predictions of theory. We separate the analysis in two
groups. First, the aggregate data. These include all the observations of the adversary
behind in the game, separated into the cases where theory predicts draw and the cases
where theory predicts no draw (the data are then pooled across roles). Second, the ‘mar-
ginal states.’ These include the observations in the last state where theory predicts that
the adversary behind in the game should draw (h∗ −1 for red and l∗ +1 for blue), and
the observations in the first state where theory predicts that the adversary behind in the
game should not draw (h∗ for red and l∗ for blue). The data are compiled in Table 4.
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The aggregate data reveal that the proportion of total observations consistent with
the theoretical predictions is high, 85%, especially given that we only consider the
choices of the adversary behind in the game. Also, there is a lower frequency of
under-sampling than over-sampling: In 8% of the cases where subjects should draw
they choose instead not to draw, whereas in 39% of the cases where subjects should
not draw they choose instead to draw. Note, however, two caveats when we attempt
to compare these two types of mistakes. First, in equilibrium, an adversary can only
under-sample once in each match, unless the other adversary chooses to sample despite
being ahead (a rare event). By contrast, he can keep over-sampling indefinitely. In fact,
due to the stochastic nature of the process, a red adversary who chooses a cutoff strat-
egy with an incorrect stopping state (e.g., h∗ + 1 instead of h∗) will, on average,
over-sample more than once in each match.Second, the total number of observations
is asymmetric. For instance, suppose that an adversary under-samples in match 1 and
over-samples in match 2. For both matches, there are observations where the adversary
should sample (and for match 2, he always samples when he should). Conversely, only
for match 2, there are observations where the adversary should not sample (and at least
in one of these cases, he mistakenly samples).These considerations suggest that, in
the absence of a behavioral theory about under- and over-sampling, we cannot make
a direct comparison of the proportions of mistakes in either direction.

One way to make over- and under-sampling more comparable (although the caveats
will still apply) is to restrict attention to the marginal states, that is, the states where
adversaries are supposed either to draw for the last time or not draw for the first time.
By definition, the cost–benefit analysis is most difficult to perform in these states,
so we can expect the greatest number of mistakes. As Table 4 shows, there are 8%
fewer observations consistent with the theory than when all states are considered. If
we divide the analysis into under- and over-sampling, then the increase in mistakes
is small but statistically significant in both cases: around 5% for under-sampling and
6% for over-sampling. Therefore, although the fraction of mistakes is non-negligible,
behavior is still reasonably consistent with the theory, especially for the ‘no draw’
case. Naturally, the increase in mistakes when we consider only the marginal states
is more salient for under-sampling if we use as a baseline the mistakes in all states
(increase from 8 to 13% v. increase from 39 to 45%). This is in part explained by the
second caveat mentioned above: The number of observations where theory predicts
draw and no draw, respectively, is less dissimilar when we consider only the marginal
states (2,404 vs. 1,156) than when we consider all states behind (6,130 vs. 1,819).

Finally, we can also determine the optimal strategy of an adversary who knows the
empirical sampling frequencies of the population. The problem turns out to be chal-
lenging because, contrary to the theoretical model, both adversaries sometimes sample
simultaneously and therefore move the state from x to x±2. Using numerical methods,
we computed the best response to the empirical strategies for the adversaries in each
role and in each cost treatment. In all eight cases, the best response coincides with the
Markov equilibrium play described in Table 2. This result provides further support
to the idea that adversaries’ choices are close to the theoretical predictions. Indeed,
if the strategies of an adversary were to depart systematically and substantially from
equilibrium, the best responses of the other adversary would also imply a departure
from the Markov equilibrium. The results of this section are summarized as follows.
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Table 5 Expected payoffs of blue and red adversaries at n = −1 and n = 0

State n = −1 n = 0

(cR , cB ) (3, 3) (3, 13) (13, 3) (13, 13) (3, 3) (3, 13) (13, 3) (13, 13)

blue payoff

(1) Empirical 20.0 −1.2 28.6 5.3 47.4 33.0 62.4 46.7

(2) Markov eq. 18.6 0.5 32.1 11.9 43.0 30.3 66.0 55.9

(3) Best response 22.6 3.3 31.0 9.4 49.7 36.6 64.2 50.3

red payoff

(1) Empirical 64.2 73.2 46.8 60.1 35.3 40.8 7.3 14.7

(2) Markov eq. 63.4 75.2 43.1 64.0 36.0 44.2 8.5 19.0

(3) Best response 66.6 75.8 50.2 62.2 38.5 44.7 12.3 18.4

Result 1 The empirical behavior is close to the theoretical prediction in action space.
Best response to the empirical strategies coincides with equilibrium behavior. Devia-
tions are infrequent and occur in both directions (under- and over-sampling).

4.2 Aggregate payoffs

The next step consists in determining the expected payoffs of adversaries in the states
where they should start sampling (blue at n = −1 and red at n = 0) under different
scenarios. More precisely, we compute three cases: (1) the expected payoffs given the
empirical behavior of both adversaries; (2) the expected payoffs if both adversaries
played according to the Markov equilibrium; and (3) the expected payoff of an adver-
sary who best responds to the empirical strategy of the other adversary which, given
our previous result, coincides with the equilibrium play. To facilitate comparisons, we
normalize the payoffs of losing and winning the match to 0 and 100, respectively. The
results are summarized in Table 5.15

Comparing (1) and (3), we notice that by deviating from the best response strategy,
adversaries lose at most 3.9 points if their drawing cost is low, and at most 5.0 points
if their drawing cost is high. This is relatively small given that the difference between
winning and losing is 100 points and that the cost per draw is 3 or 13 points. As
discussed in Sect. 4.1, it suggests that adversaries are not far from best responding to
the strategy of their rivals. Comparing (1) and (2), we notice that the empirical choices
of adversaries translate into net gains relative to the Markov equilibrium in 5 cases and
net losses in the other 11, with the magnitudes being always rather small. This provides
further evidence that sampling errors occur in both directions. Indeed, recall that the
sum of benefits is constant across matches. Joint under-sampling is likely to result in
lower costs and therefore higher average payoffs for both adversaries, whereas joint
over-sampling is likely to result in higher costs and therefore lower average payoffs.

15 For more extreme states, the analysis is less informative: Payoffs are mostly driven by costs so the
differences between the three cases are small (data not reported but available upon request). We perform
below what we think is a more informative comparison for the marginal states.
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Table 6 Values to drawing and not drawing by state

n (blue–red draws) −4 −3 −2 −1 0 1 2 3 4

(cR , cB ) = (3, 3)

red draw 93.9 87.5 73.0 58.3 38.5 16.1 3.4 −2.6 −3.0

red no draw 99.7 98.0 88.7 66.6 3.1 0.1 0.0 0.0 0.0

blue draw −3.0 −1.1 6.1 22.6 43.6 61.1 79.1 91.8 94.5

blue no draw 0.0 0.1 0.1 1.7 49.7 76.3 93.9 99.3 99.9

(cR , cB ) = (3, 13)

red draw 95.1 93.5 79.8 60.5 44.7 19.5 4.8 −1.8 −3.0

red no draw 99.9 99.7 96.9 75.8 1.6 0.0 0.0 0.0 0.0

blue draw −14.3 −14.1 −17.1 3.3 20.9 32.1 54.4 72.9 80.4

blue no draw 0.0 0.0 0.0 1.4 36.6 68.9 91.0 98.3 99.8

(cR , cB ) = (13, 3)

red draw 76.8 64.7 44.7 33.4 12.3 −10.7 −13.0 −13.0 −13.0

red no draw 99.4 96.0 80.5 50.2 1.3 0.0 0.0 0.0 0.0

blue draw −4.1 0.6 9.8 31.0 47.1 70.1 91.7 96.4 96.9

blue no draw 0.0 0.0 0.0 0.7 64.2 91.6 99.6 100.0 100.0

(cR , cB ) = (13, 13)

red draw 78.4 78.3 57.1 36.6 18.4 −6.4 −13.0 −13.0 −13.0

red no draw 99.9 99.8 94.9 62.2 2.4 0.0 0.0 0.0 0.0

blue draw −13.0 −13.0 −13.0 9.4 26.1 44.9 74.5 80.0 78.6

blue no draw 0.0 0.0 0.0 0.5 50.3 87.6 99.3 99.9 100.0

The previous comparisons are suggestive but incomplete. Indeed, one concern in
this type of games is that small payoff differences between predicted and empirical
choices may be due to a flatness in the payoff functions. In order to evaluate the cost
of deviating from equilibrium behavior, we conduct the following numerical analysis.
We fix the cost treatment, assume that the first adversary follows the empirical strategy
and that the second adversary best responds to it (which, remember, also corresponds
to the Markov equilibrium) at all states but n. We then determine the expected payoff
in state n of the second adversary if he also plays the equilibrium strategy at n and if he
plays the alternative strategy.16 This exercise captures how much is lost by deviating
from best response in one and only one state. The results are summarized in Table 6.
We highlight in bold the payoffs given equilibrium play at all states. So, for example,
since h∗ = 3 for the red adversary in the (3,3) treatment, the bold value is for “draw”
in states n ∈ {0, 1, 2} and for “no draw” otherwise. As before, the payoffs of winning
and losing are normalized to 100 and 0, respectively.

From this table, we can determine the utility loss of under-sampling and over-sam-
pling in the marginal states, for each pair of costs and each role. We notice a wide
spread in the cost of one-unit deviations, which ranges from 0.6 to 17.1 points across

16 Notice that he may reach state n several times. The assumption is that he either always or never plays
the equilibrium strategy.
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Table 7 Empirical sampling frequencies in marginal states

Adversary red blue

(cR , cB ) (3,3) (3,13) (13,3) (13,13) (3,3) (3,13) (13,3) (13,13)

Marginal state

Theory is draw 0.62 0.67 0.93 0.97 0.77 0.92 0.52 0.97

Theory is no draw 0.30 0.48 0.52 0.55 0.45 0.31 0.37 0.33

treatments. Also, there are no systematic patterns on the relative losses of under- and
over-sampling within a treatment. Under-sampling is more costly than over-sampling
in 5 cases and less costly in the other 3. Erring on either side sometimes results in
similar costs (3.4 vs. 2.6 points) and some other times in substantially different ones
(17.1 vs. 1.9 points).17 Overall, the exercise suggests that payoff functions are not
flat; the loss incurred by a mistake in only one state is sometimes small but some
other times quite high (17 points out of a total stake of 100 points minus the cost of
sampling).18 We summarize the findings of this section as follows.

Result 2 The empirical behavior is close to the theoretical prediction in payoff space.

4.3 Deviations

We now explore in more detail the deviations from equilibrium behavior observed
in the data. We start with an analysis of the adversaries’ actions. From inspection of
Table 3 and Fig. 2, it is apparent that the main difference with the theoretical prediction
is the absence of a sharp decline in the likelihood of sampling around the equilibrium
level. In Table 7, we separate the marginal states into the last state where adversaries
are supposed to draw and the first state where adversaries are supposed to not draw
(just like in Table 4). We then report the proportion of sampling in each of these two
cases.

Instead of a 100% decline, we observe in the data a decline of 29 to 66%. There
are at least two reasons for this smooth pattern. One is a significant heterogeneity in
individual behavior. Although it is worth noting this possibility, we will not conduct
a detailed individual analysis. Indeed, since the observed behavior is close to the the-
oretical prediction, we feel that the added value of an exhaustive exploration at the
individual level would be rather small. The second reason is related to the integer

17 This is partly due to the integer nature of the sampling strategies. Indeed, when the optimal stopping
point is somewhere between x − 1 and x , the adversary obtains a similar payoff when he stops at either of
these thresholds. In that respect, using a discrete information accumulation process makes the model more
intuitive and easier to explain to subjects but, at the same time, introduces integer effects that can affect the
results.
18 We also performed the same computations as in Table 6 except that, instead of best responding, we
assumed that the second adversary followed the empirical strategy at all states but n and then determined
the expected payoff given drawing at n and given not drawing at n. The results were very similar and are
not reported for the sake of brevity.
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Table 8 Proportion of equilibrium behavior by adversaries’ own cost (standard errors clustered at the
individual level in parentheses; number of observations in brackets)

All states behind Marginal states

low cost high cost low cost high cost

Theory is draw 0.909 (0.008) 0.943 (0.010) 0.727 (0.029) 0.939 (0.011)

[4,204] [1,926] [779] [1,625]

Theory is no draw 0.585 (0.042) 0.619 (0.029) 0.592 (0.043) 0.528 (0.034)

[535] [1284] [387] [769]

All 0.873 (0.007) 0.814 (0.015) 0.682 (0.016) 0.807 (0.013)

[4,739] [3,210] [1,166] [2,394]

nature of the sampling strategy, and the idea that when the optimal stopping point is
between two cutoffs then similar payoffs may be obtained by stopping at either of them
(see the discussion in footnote 17). Notice that adversaries draw with a substantially
higher probability in h∗ − 1 and l∗ + 1 when their cost is high than when it is low.
Also, in three out of four cases, their percentage decrease is also greater. This suggests
that an adversary with low cost is more likely both to under-sample and to exhibit a
less steep decline in drawing around the equilibrium than an adversary with high cost.

To further explore how costs affect deviations from equilibrium, we perform the
same analysis as in Table 4, except that we separate the proportion of equilibrium play
according to the adversary’s own cost. The results are displayed in Table 8.

When we pool together all states where the adversary is behind, the results are simi-
lar for low and high costs, simply because in non-marginal states adversaries generally
play close to the equilibrium predictions. More interestingly, in the marginal states,
under-sampling is overall infrequent and more pronounced with low than with high
costs (27 vs. 6%). Over-sampling is more frequent and slightly more pronounced with
high than with low costs (47 vs. 41%).

Next, we study how deviations affect payoffs in the different cost treatments.
Comparing (1) and (2) in Table 5, we notice that for the (13,13) treatment, the equilib-
rium payoffs exceed the empirical payoffs of adversaries in all four cases. By contrast,
for the (3,3) treatment, the empirical payoffs exceed the equilibrium payoffs of adver-
saries in three out of four cases. This is consistent with the sampling biases discussed
previously: Joint under-sampling in the (3,3) treatment results in lower costs for both
adversaries and similar benefits, whereas joint over-sampling in the (13,13) treatment
results in higher costs for both adversaries and similar benefits.19 The result is con-
firmed if we compare Markov equilibrium and best response to empirical behavior.
When the cost of the red adversary is low, the blue adversary gets a higher payoff in (3)
than in (2), whereas when the cost of the red adversary is high, the blue adversary gets
a higher payoff in (2) than in (3). Since in both cases the blue adversary is choosing the

19 The asymmetric cost cases are more difficult to interpret. Over-sampling by the high cost player implies
a lower expected payoff for the low cost player independently of his choice, but also a lower marginal value
of sampling.
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same (optimal) strategy, this reinforces the idea that the red adversary has a tendency
to under-sample when his cost is low and over-sample when his cost is high. The same
result applies for the red adversary when the blue adversary has cost 3 but not when
the blue adversary has cost 13 (in that case, payoffs are almost identical in all four
cases). However and as previously noted, payoff differences are generally small.

Finally, it is also instructive to compare the utility loss incurred by deviating from
best response for adversaries with high and low cost of sampling. Using Table 6, we
notice that in 3 out of 4 observations, the utility loss for the low-cost adversary is
bigger with under-sampling than with over-sampling. Conversely, in 3 out of 4 obser-
vations, the utility loss for the high-cost adversary is bigger with over-sampling than
with under-sampling. In either case, the average difference is relatively small. Also,
either type of deviation implies generally a greater loss for an adversary with a high
cost than for an adversary with a low cost: Averaging across deviations and roles, the
loss is 10.6 when c = 13 and 3.1 when c = 3. The reason for such difference can
be easily explained in the case of over-sampling by the direct cost incurred with each
draw (13 and 3), but it also occurs for under-sampling. Last, notice that the deviations
we observe in the data are precisely the ones that imply higher utility losses: under-
sampling for low cost and over-sampling for high cost. The result is summarized as
follows.

Result 3 The decline in sampling around the theoretical equilibrium is smoother than
predicted by theory. There is under-sampling by adversaries with low cost and over-
sampling by adversaries with high cost. In general, over-sampling is more pronounced
than under-sampling.

4.4 Comparative statics

We now study whether the basic comparative statics predicted by the theory are
observed in the data. To this purpose, we first run probit regressions to compute the
probability of sampling by an adversary as a function of the state. We only include
states where the adversary is behind to ensure a monotonic theoretical relation.20 For
each role, we perform the regression on four subsamples, taking either the adversary’s
own cost or the other adversary’s cost as fixed. In the former case, we introduce a
dummy variable that codes whether the other adversary’s cost was high (high other c).
In the latter case, we introduce a dummy variable that codes whether the adversary’s
own cost was high (high own c). We also analyze sequencing effects by including a
dummy variable that codes whether the particular cost treatment occurred in the first
20 or the last 20 matches of the experiment (seq. late). Furthermore, remember that
subjects played 10 consecutive matches with the same cost pairs. We study a simple
version of experience effects by introducing a dummy variable that separates the first
5 matches from the last 5 matches within a given cost pair (exp). We also include
interactions terms. The results are summarized in Table 9.

20 Also, we already know from the previous analysis that behavior is almost invariably in accordance with
theory when the adversary is ahead.
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Table 9 Probit regression on probability of sampling (standard errors clustered at individual level in
parentheses; * = significant at 5% level, ** = significant at 1% level)

blue red

cB = 3 cB = 13 cR = 3 cR = 13 cR = 3 cR = 13 cB = 3 cB = 13

Constant 2.34** 1.58** 2.30** 3.00** 3.11** 1.78** 3.50** 3.10**

(0.269) (0.389) (0.422) (0.347) (0.218) (0.340) (0.294) (0.344)

Draws behind −0.710** −0.642* −0.641** −0.822** −0.990** −0.713** −1.02** −0.779**

(0.144) (0.282) (0.216) (0.192) (0.090) (0.192) (0.126) (0.148)

Seq. late 0.241 0.889 0.199 0.579 −0.261 1.79** −0.163 0.251

(0.216) (0.460) (0.371) (0.366) (0.335) (0.355) (0.345) (0.272)

Draw × seq. −0.121 −0.655* −0.140 −0.381 0.134 −1.19** 0.097 −0.179

(0.108) (0.316) (0.237) (0.219) (0.147) (0.209) (0.173) (1.42)

Exp. 0.011 0.541 0.388 −0.179 0.045 0.594* 0.184 0.141

(0.219) (0.410) (0.296) (0.354) (0.230) (0.300) (0.255) (0.243)

Draw × exp. 0.041 −0.331 −0.187 0.125 0.006 −0.346 −0.096 −0.028

(0.114) (0.291) (0.186) (0.202) (0.098) (0.182) (0.131) (0.136)

High own c – – −0.836** −1.17** – – −1.26** −1.08**

(0.165) (0.164) (0.118) (0.157)

High other c 0.244* 0.022 – – 0.150 0.248* – –

(0.110) (0.100) (0.096) (0.110)

Adj. R2 0.28 0.27 0.25 0.32 0.35 0.36 0.35 0.33

Not surprisingly, as the difference between unfavorable and favorable draws
increases, adversaries are less inclined to sample. The effect is strong and highly
significant in all eight subsamples. Similarly, as an adversary’s cost increases, his
likelihood of sampling decreases. Again, the effect is strong and significant at the 1%
level in all four subsamples. The strategic effect on the behavior of an adversary of
the other adversary’s cost is more involved. Proposition 1 states that thresholds are
strategic substitutes, so a higher cost by one adversary translates into (weakly) more
sampling by the other. However, due to the integer constraints, the theory predicts that
an increase in the cost of the red adversary should translate into a higher level of sam-
pling by the blue adversary if his cost is low and to no change in sampling if his cost
is high (see Table 2). This is precisely what we observe in the data with the coefficient
‘high other c’ for the blue adversary being positive in both cases but significant only
when cB = 3. For the red adversary, the integer constraint implies no increase in sam-
pling when the blue adversary’s cost increases both when cR = 3 and when cR = 13.
In the data, the coefficient is significant when the cost of the red adversary is high.
Overall, all four coefficients for ‘high other c’ are positive but two are significant even
though only one should be. The strategic substitutability is, if anything, stronger than
predicted by the theory. The analysis of experience and sequencing in this regression
are deferred to the next subsection.

We next explore different comparative statics on sampling as a function of costs.
For each state n, we compare the average level of sampling across the different cost
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treatments. The results are summarized in Table 10, which can be read as follows. For
each state n, we consider only the adversary behind in the game. We then compute the
empirical average difference in sampling between the column cost pair treatment and
the row cost pair treatment. We perform a standard t-test of the difference and report
in parentheses the p-value for the statistical significance of the average difference.
Finally, we report in brackets the theoretical prediction: no change in sampling [o], a
100% decrease in sampling [−], or a 100% increase in sampling [+].

For each state, we then compare the empirical and theoretical change in sampling
between cost pairs. Note that theory predicts either 0% or 100% probability of sam-
pling in each state (so no change at all or a 100% change between the row and column
treatments). We code a (positive or negative) empirical change in probability as ‘sig-
nificant’ when (i) the magnitude of the (positive or negative) change is at least 10%
and (ii) the change is statistically significant at the 5% level.21 Using these criteria, we
obtain that 23 out of 24 mean comparisons for the red adversary follow the patterns
predicted by theory: no difference in 15 cases and a statistically significant decrease
in 8 cases. For the blue adversary, 21 out of 24 mean comparisons follow the patterns
predicted by theory: no difference in 15 cases, a decrease in 4 cases, and an increase in
2 cases. The 3 misclassified observations are for n = 3. It is due to an insufficient level
of sampling in the (13,3) treatment and an excessive level of sampling in the (3, 3)

treatment, where the empirical draw rates are 0.52 and 0.45 whereas the predicted rates
are 1.0 and 0.0. Notice that our method controls neither for joint correlation between
tests (when one sampling departs significantly from theory, several comparisons are
affected) nor for multiplicity of tests (we make 48 comparisons at a 5% significance
level). However, the fact that 44 out of 48 are correctly classified suggests that the
comparative statics are to a large extent in accordance with theory.22 The results of
this section are summarized as follows.

Result 4 The comparative statics follow the predictions of theory both in aggregate
and state-by-state: An adversary samples more when his cost is low and when the cost
of the other adversary is high.

4.5 Learning

We now study whether subjects change their behavior over the course of the experi-
ment. We know from Sect. 4.1 that the proportion of mistakes by adversaries ahead is
low (4.8%). It is nevertheless instructive to determine how these mistakes evolve over
time. The proportion of mistakes is 6.9% in the first 20 matches and 2.6% in the last 20
matches of the experiment. This suggests that subjects learn to avoid basic mistakes
almost entirely as the experiment progresses.

21 In other words, a decrease in sampling from 1.00 to 0.97 (as, for example, between (3, 3) and (13, 13)

for n = 0) is not coded as a change even if the 3% difference is statistically significant.
22 We should mention as a caveat that we do not use the clustered standard errors when performing the
t-test, which is somewhat unsatisfactory since the observations are not independent. Note, however, that
similar results are obtained even if we strengthen the statistical significance (e.g., 1% level). Results are
also similar if we use a different criterion for the magnitude of the change (e.g., at least 20% change).
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Table 11 Proportion of equilibrium behavior by sequence (standard errors clustered at individual level in
parentheses; number of observations in brackets)

All states behind Marginal states

Seq. 1 & 2 Seq. 3 & 4 Seq. 1 & 2 Seq. 3 & 4

Theory is draw 0.915 (0.009) 0.925 (0.008) 0.861 (0.018) 0.879 (0.014)

[3,064] [3,066] [1,203] [1,201]

Theory is no draw 0.571 (0.036) 0.653 (0.029) 0.506 (0.040) 0.591 (0.035)

[972] [847] [571] [585]

All 0.832 (0.011) 0.866 (0.008) 0.747 (0.014) 0.785 (0.013)

[4,036] [3,913] [1,774] [1,786]

Table 12 Proportion of equilibrium behavior by level of experience (standard errors clustered at individual
level in parentheses; number of observations in brackets)

All states behind Marginal states

Inexperienced Experienced Inexperienced Experienced

Theory is draw 0.915 (0.008) 0.925 (0.008) 0.860 (0.015) 0.881 (0.015)

[3,112] [3,018] [1,239] [1,165]

Theory is no draw 0.609 (0.033) 0.609 (0.028) 0.557 (0.035) 0.542 (0.034)

[896] [923] [580] [576]

All 0.847 (0.009) 0.851 (0.009) 0.764 (0.011) 0.769 (0.013)

[4,008] [3,941] [1,819] [1,741]

We then move on to the more interesting case of adversaries who are behind in the
game. A simple approach to determine changes in behavior is to divide the sample
into early sequences (1 and 2, that is, matches 1 to 20) and late sequences (3 and 4,
that is, matches 21 to 40) or into inexperienced (first 5 matches within a cost pair) and
experienced (last 5 matches). We then determine the proportion of equilibrium play
in each subsample. The results are compiled in Tables 11 and 12.

From Table 11, we notice that over-sampling both in the marginal states and in all
states taken together decreases by roughly 8% when the cost treatment under consid-
eration is played late in the experiment. Under-sampling remains mostly unaffected,
partly because it is quite low to start with. In all four cases, mistakes are reduced. By
contrast, Table 12 suggests that experience within a cost treatment has virtually no
effect on the behavior of adversaries.

A more rigorous look at the data consists in studying significance of the ‘sequence’
and ‘experience’ variables in the Probit regression presented in Table 9. The sequenc-
ing effect is significant for both adversaries when their own cost is high. The positive
coefficient of ‘seq. late’ and negative coefficient when combined with the number of
draws behind suggests that, when that particular cost pair comes late, adversaries sam-
ple more if they are behind by few draws and less if they are behind by many draws, as
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learning would predict.23 This effect is not present in any of the other six subsamples.
The effect of experience is only marginally significant in one of the eight subsamples.
Overall, the regression provides limited evidence of learning due to sequencing and
none due to experience.

All in all, there is little evidence of changes in sampling behavior over trials. One
possible explanation is that subjects had insufficient exposure to the game (40 matches
under 4 different cost treatments). We tend to favor a simpler explanation: Subjects
play relatively close to equilibrium right from the outset, so there is little room for
learning. The result is summarized as follows.

Result 5 Adversaries ahead in the game learn to avoid sampling mistakes almost
entirely. Adversaries behind in the game exhibit limited learning over the course of
the experiment.

5 Conclusion

In this paper, we have analyzed a model of information acquisition by adversaries
with opposite interests. We have characterized the Markov equilibrium of the game
and shown that the choice variables are strategic substitutes: If the incentives to col-
lect information of one adversary increase, then the incentives of the other adversary
decrease. We have tested the predictive power of the theory in a controlled laboratory
setting. Behavior of subjects is remarkably close to predictions by theory even if, rel-
ative to individual decision-making problems, choices in our game are substantially
more complex and involve strategic considerations. Mistakes are relatively infrequent
and, to some extent, take more often the form of over-sampling than under-sampling.
Comparative statics on the adversary’s own cost and the other adversary’s cost gen-
erally follow the predictions of theory both at the aggregate level and state-by-state.
Finally, there is little evidence of learning.

The study can be extended in several directions. First, one could consider richer sig-
nal structures. For example, having a third “null” signal that contains no information
is equivalent to having a higher sampling cost. One could also have a larger number of
signals or even a continuum of signals. These models would be more complicated to
solve analytically, but we conjecture that the solutions would be stopping rules with
similar characteristics and comparative statics as in our binary signal model.

A second possible extension of the theory would be to combine the acquisi-
tion of information and the revelation of information paradigms as in the model of
Gul and Pesendorfer (2009). In particular, one could extend the literature on games
of persuasion to incorporate a sequential process of acquisition of private pieces of
non-verifiable information. This would allow us to determine the optimal stopping
rule given the anticipated future use of private information.

From an experimental viewpoint, the similarity between empirical behavior and the-
oretical predictions is intriguing. It would be interesting to study behavior in even more

23 The p value of ‘seq. late’ for the blue player with high cost is 0.054. The other three are below 5%.
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sophisticated environments. One possibility would be to consider three adversaries.
When the evidence favors one adversary, which of the other two will be more likely
to acquire information and which one will be more tempted to free-ride? Another
possibility would be to let adversaries choose the accuracy of information, that is,
the correlation between event and signal. A different extension would be to allow
adversaries to engage in agreements with collusive side transfers that would replace
information acquisition. Because paying for information is inefficient from their joint
viewpoint, the theory would predict always agreement and no sampling. In the exper-
iment, will these agreements happen frequently? When they occur, will the payoffs
of each adversary be above or below their expected return in the non-cooperative
Markov equilibrium with sampling? A final possibility would be to use this frame-
work to study bribery, for example by letting the decision maker play an active role
and demand bribes from the adversaries in exchange of a certain action. Will he be
able to extract the full surplus of the adversaries? These and other related questions
are left for future research.

Appendix: Proof of Proposition 1

It is immediate that the blue adversary will never sample if n ≥ 0 and the red adversary
will never sample if n ≤ −1. Also, if at some stage no adversary finds it optimal to
sample, no information is accumulated so it cannot be optimal to restart sampling.
Suppose now that the event is S = B and the state is n ∈ {0, . . . , h − 1}, where h is
the value where the red adversary gives up sampling (we will determine this optimal
value below). The value function of the red adversary, denoted gr

B(n), satisfies the
following second-order difference equation with constant term:

gr
B(n) = θ gr

B(n + 1) + (1 − θ)gr
B(n − 1) − cR .

where θ (1 − θ ) is the probability of receiving signal β (ρ) given that the event is B,
thereby moving the state to n + 1 (n − 1). Applying standard methods to solve for the
generic term of this equation, we get:

gr
B(n) = y1 + y2 λn + FR n (1)

where λ = (1 − θ)/θ and FR = cR/(2θ − 1). In order to determine the constants
(y1, y2), we need to use the two terminal conditions. By definition, we know that
at n = h the red adversary gives up and gets 0. Therefore, gr

B(h) = 0. The lower
terminal condition is more intricate. We have gr

B(−1) = qb
B + (1 − qb

B)gr
B(0), where

qb
S is the probability that the blue adversary reaches n = −l before reaching n = 0

given event S ∈ {R, B} and state n = −1. In other words, the red adversary knows
that when n = −1, the blue adversary will restart sampling (thus the red adversary
will stop paying costs). With probability qb

B , the belief will reach n = −l. The blue
adversary will stop at that point, and the red adversary will obtain a payoff of 1. With
probability 1 − qb

B , the belief will go back to n = 0. The value function of the red
adversary will then be gr

B(0), and he will have to start sampling again. For the time
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being, let us take qb
B as exogenous (naturally, we will need to determine later on what

this value is). Using (1) and the two terminal conditions, we obtain a system of two
equations (gr

B(h) and gr
B(−1)) with two unknowns (y1 and y2). Solving this system,

we can determine the values (y1, y2) which, once they are plugged back into (1), yield:

gr
B(n) =

(
qb

B + FR(1 + h qb
B)

)[
λn+1 − λh+1

1 − λ + λ(1 − λh)qb
B

]
− FR(h − n) (2)

When the event is S = R, the second-order difference equation for the red adversary
is as follows:

gr
R(n) = (1 − θ)gr

R(n + 1) + θ gr
R(n − 1) − cR

where the only difference is that the likelihood of moving the state to n + 1 (n − 1) is
now 1 − θ (θ ). Solving in an analogous fashion, we get the following:

gr
R(n) =

(
qb

R − FR(1 + h qb
R)

) [
1 − λh−n

λh(1 − λ) + (1 − λh)qb
R

]
+ FR(h − n) (3)

At this point, we need to determine qb
S . Recall that the blue adversary gives up at

n = −l (where −l will be determined below). Let hb
S(n) denotes the blue adversary’s

probability of reaching n = −l before n = 0 given event S and a starting state n.
Using the by now familiar second-order difference equation method, we have:

hb
B(n) = θ hb

B(n + 1) + (1 − θ)hb
B(n − 1) with hb

B(−l) = 1 and hb
B(0) = 0

and

hb
R(n) = (1 − θ)hb

R(n + 1) + θ hb
R(n − 1) with hb

R(−l) = 1 and hb
R(0) = 0

Note that hb
S(·) captures exclusively the blue adversary’s likelihood of reaching

each stopping point (−l or 0), that is, it does not take costs into consideration. This is
the case because in the red adversary’s calculation only the probabilities matter (not
the net utility of the blue adversary). Solving for the generic term in a similar way as
before, we now get the following:

hb
B(n) = λl+n − λl

1 − λl and hb
R(n) = 1 − λ−n

1 − λl
.

This implies that:

qb
B ≡ hb

B(−1) = λl−1 − λl

1 − λl
and qb

R ≡ hb
R(−1) = 1 − λ

1 − λl
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Inserting the expressions of qb
B in (2) and qb

R in (3), we can finally determine gr
B(n)

and gr
R(n) as a function of the parameters of the model.

Note that Pr(B | n) = μ(n) = 1
1+λn and Pr(R | n) = 1 − μ(n) = λn

1+λn . The
expected payoff of the red adversary given state n ∈ {0, . . . , h − 1}, is then:

�r
n(l, h) = Pr(B | n) gr

B(n) + Pr(R | n) gr
R(n)

= 1

1 + λn

[(
1 + λl − FR(h + 1)(1 − λl)

) [
λn − λh

1 − λh+l

]
− FR(h − n)(1 − λn)

]

(4)

A similar method can be used to determine the expected payoff of the blue adver-
sary when the state is n ∈ {−l+1, . . . ,−1}, with the only exception that sampling is
stopped at n = −1 rather than at n = 0. We then get:

�b
n(l, h) = Pr(B | n) gb

B(n) + Pr(R | n) gb
R(n)

= 1

1 + λn

[(
1 + λh − FB(l − 1)(1 − λh)

) [
1 − λn+l

1 − λh+l

]
+ FB(n + l)(1 − λn)

]

(5)

In a Markov equilibrium, the best response functions of the red and blue adversaries
are

h∗(l) = arg max
h

�r
n(l, h) and l∗(h) = arg max

l
�b

n(l, h)

Taking first-order conditions in (4) and (5), the best response functions satisfy the
following:

− λh∗(l) ln λ
[
1 + λl − FR(h∗(l) + 1)(1 − λl)

]
= FR(1 − λh∗(l))(1 − λl+h∗(l))

(6)

−λl∗(h) ln λ
[
1 + λh − FB(l∗(h) − 1)(1 − λh)

]
= FB(1 − λl∗(h))(1 − λl∗(h)+h)

(7)

As expected, h∗ and l∗ do not depend on n, that is, the optimal stopping rules of the
two adversaries are not revised with the realizations of the sampling process. Also
∂2�r

n
∂h2

∣∣∣
h∗(l)

< 0 and ∂2�b
n

∂l2

∣∣∣
l∗(h)

< 0, so h∗ and l∗ are indeed maxima.

From (4), there exists h̄(l) such that �r
n(l, h) < 0 for all l and h > h̄(l). Similarly,

from (5), there exists l̄(h) such that �b
n(l, h) < 0 for all h and l > l̄(h). It means that

h∗(l) < +∞ and l∗(h) < +∞ (i.e., cutoffs are finite for all cR > 0 and cB > 0).
This together with the continuity of the best response functions is sufficient to ensure
that an equilibrium always exists. Note however that the first-order conditions (6) and
(7) can have unique, multiple, or no interior solution (in the last case, only a corner
solution will exist with either one or both adversaries never sampling).

123



676 I. Brocas et al.

Also, ∂h∗
∂l ∝ ∂2�r

n
∂h∂l

∣∣∣
h∗(l)

< 0 and ∂l∗
∂h ∝ ∂2�b

n
∂h∂l

∣∣∣
l∗(h)

< 0, which means that h∗

and l∗ are strategic substitutes. Finally, ∂2

∂h∂cR
�r

n(l, h) < 0, so the reaction function
h∗(l) shifts downwards when cR increases. Together with the strategic substitutabil-
ity, it means that in any stable equilibrium h∗ is non-increasing in cR and l∗ is non-
decreasing in cR . Similarly, ∂2

∂l∂cB
�b

n(l, h) < 0, so the reaction function l∗(h) shifts
downwards when cB increases, which again means that in any stable equilibrium, l∗
is non-increasing in cB and h∗ is non-decreasing in cB . �
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