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Abstract

We study the foundations for the development of optimal randomization in mixed
strategy games. We consider a population of children and adolescents (7 to 16 years
old) and study in the laboratory their behavior in a non-zero sum, hide-and-seek game
with a unique interior mixed strategy equilibrium where each location has a known
but different value. The vast majority of participants favor the high-value location
not only as seekers (as predicted by theory) but also as hiders (in contradiction with
theory). The behavior is extremely similar across all ages, and also similar to that
of the college students control adult group. We also study the use of cheap talk
(potentially deceptive) messages in this game. Hiders are excessively truthful in the
messages they send while seekers have a slight tendency to (correctly) believe hiders.
In general, however, messages have a small impact on outcomes. The results point to
a powerful (erroneous) heuristic thinking in two-person randomization settings that
does not get corrected, even partially, with age.
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1 Introduction

The ability to make choices that are unpredictable to other people is an essential com-

ponent of optimal decision making in a myriad of strategic contexts where players have

conflicting interests (sports, politics, corporations, etc.). Von Newman’s minimax theorem

for zero-sum games and, more generally, the mixed strategy Nash equilibrium are corner-

stones of game theory. The two pillars of the theory state that payoffs should be equal

across strategies and choices should be serially uncorrelated. Unfortunately, the beauty

and crispness of these theoretical predictions contrasts with the empirical behavior. As

demonstrated in the early experimental literature, departures are frequent and with no

obvious systematic patterns across games (see e.g. Rapoport and Boebel (1992); Mookher-

jee and Sopher (1994); Ochs (1995) and the review in Camerer (2003) chapter 3).1 The

subsequent literature has taken two main routes. Some researchers have used existing be-

havioral models, such as quantal response equilibrium and cognitive hierarchy, to explain

the observed deviations (McKelvey and Palfrey, 1995; Goeree et al., 2003; Crawford and

Iriberri, 2007). A second strand has investigated differences in behavior between regu-

lar subjects and expert randomizers (Walker and Wooders, 2001; Chiappori et al., 2002;

Palacios-Huerta, 2003).

In this paper, we follow a third avenue. We provide a foundational study of the ability

of individuals to play mixed strategies by investigating the evolution of behavior from a

very young age into adulthood. Indeed, while the literature has analyzed unpredictability

and optimal alternation of actions by children in individual decision making contexts

(Rabinowitz et al., 1989; Towse and Mclachlan, 1999), randomization by children in a

game of strategy has not been studied.2

A mixed strategy game is an interesting candidate for a developmental study. The game

is easy to understand. Optimal play is neither trivial nor extraordinarily difficult. Also,

deviations by adults are frequent–yet not omnipresent–and follow systematic patterns.

Finally, and despite some advancements (Goeree and Holt, 2001), the fundamental reasons

for the difficulty to play optimally are still imperfectly understood. Studying the evolution

with age can help determine what makes these apparently simple situations so elusive.3

1In one of the earliest experiments, O’Neill (1987) concludes that mixed strategy Nash equilibrium
cannot be rejected, but Brown and Rosenthal (1990) challenged the conclusion. McCabe et al. (2000) also
finds support for the theory in their experiment.

2Despite some recent interest in experimental economics to study decision making by children and
adolescents, the literature has predominantly focused on individual decision making (see the recent surveys
by Sutter et al. (2019) and List et al. (2018)). Some notable exceptions of game theoretic experiments with
children include Murnighan and Saxon (1998); Harbaugh and Krause (2000); Sher et al. (2014); Czermak
et al. (2016); Chen et al. (2016); Fe et al. (2020); Brocas and Carrillo (2020b, 2021).

3We also modified the game to facilitate understanding and learning, which we thought would increase
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There are competing hypotheses regarding the developmental trajectory. First, the

ability to randomize optimally may be acquired, but only slowly and imperfectly with age.

This would mean that young children perform worse than adults, and that the proportion

of equilibrium behavior has a positive trend. Alternatively, randomization may be equally

difficult at all developmental stages, with no significant improvement with age. Finally,

randomization could be an innate ability lost during childhood or adolescence. While the

last hypothesis is the least natural, it is worth noting that changes occurring in the brain

during adolescence involve losing neural connections deemed non-essential (Giedd, 2008).

During this pruning period, adolescents lose skills that have not been used frequently as

well as the ability to develop new skills (e.g., speaking a language without an accent).

It is therefore possible that abilities that have not been reinforced fade during pruning

episodes. Finally, we also incorporate a message game and analyze if the possibility to

“trick” the opponent has a significant effect on outcomes.

To study these questions, we propose a novel setting that combines and extends prop-

erties from previous games. We also propose a novel experimental design, accessible to

young individuals (7- to 16-year-old in our main population and as young as 5-year-old

in our shortened version). We develop a non-constant sum, three-action, hide-and-seek

game, where locations have known but different values.4 This small modification has

important implications. Since action probabilities are determined in a way that the op-

ponent is indifferent between their actions, in equilibrium the seeker should choose more

frequently the high-payoff location whereas the hider should choose less frequently the

high-payoff location. This means that, the high-payoff location–presumably focal for both

roles–coincides with the equilibrium prediction in one role (seekers) but not in the other

(hiders). Focality, however, is purely based on payoffs rather than on psychological con-

siderations as in Rubinstein et al. (1997) for example. Notice that a similar property of

intuitive vs. counterintuitive randomization was pointed out in Goeree and Holt (2001)’s

abstract mixed strategy game. We study if a similar tendency towards the intuitive ran-

domization is also present in our game for some (or all) of our age groups. Importantly,

since our participants play in both roles and obtain feedback, we determine whether prac-

tical experience affects their dynamic behavior. For the design, we propose a story-based

narrative with a graphical presentation of choices and feedback.

The experiment consists of three tasks. In the basic hide-and-seek game (task 1),

participants play 12 rounds with the same partner alternating roles and without feedback.

equilibrium compliance by adults. In particular, the presentation was dramatically simplified, participants
gained experience in both roles, and they obtained feedback either between or within tasks.

4Otherwise, standard hide-and-seek rules apply: when the hider chooses the location of value n, the
payoffs of hider and seeker are 0 and n if the seekers finds the location and n and 0 otherwise.
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This allows us to infer the frequency of each action for each individual and contrast

the empirical choices with the theoretical predictions. In the first extension (task 2),

participants play the very same game with a new opponent, except that hiders send a cheap

talk message regarding the location chosen. Seekers observe the message before making

their choice. Given the opposing interests, the hider’s message should be uninformative,

and therefore ignored by the seeker. In the second extension (task 3), participants play

12 rounds in one role, then switch and play 12 rounds in the other role, always with the

same partner. Participants receive feedback after each round, so we can determine if the

dynamics of choices exhibit some trends.

We obtain the following results. With respect to choices (tasks 1, 2 and 3), we notice

that every participant consistently randomizes between the alternatives. Almost no sub-

ject chooses the high-value option less than 25% or more than 75% of the time in any role.

While randomization may seem obvious for educated adults, it could, in principle, elude

young children. We show that this is not the case. At the same time, the vast majority of

individuals favor the high-value location not only as seekers (as predicted by theory) but

also as hiders (in contradiction with theory). The behavior is extremely similar across all

age groups, from 2nd graders to 10th graders (and even kindergartners in our shortened

version). It is also similar across the three tasks. Adults play somewhat closer to theory

as seekers but their behavior is equally opposite to equilibrium as hiders. Overall, there is

a powerful tendency to randomize, with an added extra weight on the high-value location.

Regarding the message game (task 2), all our participants also realize the importance

of alternating between truthful and deceptive messages. Hiders are excessively truthful,

especially in the younger age groups while seekers have a slight tendency to (correctly)

believe hiders. In general, messages have a very minor impact on payoffs. Indeed, seekers

are somewhat gullible but hiders fail to exploit this bias. On the other hand, hiders are

mostly truthful but so incorrect in their hiding patterns that their bias in messages is, in

comparison, of very little importance.

Finally, the dynamic choice with feedback (task 3) reveals that choices are serially

correlated. More precisely, we observe an excessive tendency to alternate between locations

in both roles, especially by participants in 7th grade and below. Again, this violation has

a very limited effect on payoffs.

To sum up, we observe some minor differences across ages in the provision and inter-

pretation of messages as well as in the reaction to feedback. As for choices, individuals

in all age groups show intent but also inability to be unpredictable. They all random-

ize but they do so in a suboptimal way: seekers favor the high-value location less than

they should and hiders favor the high-value location even though they should not. These

deviations have very significant payoff consequences. The similarity in behavior at all
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ages is striking. We are not aware of other developmental game theoretic studies where

the mistakes committed are so remarkably similar in direction and magnitude from early

childhood all the way to the peak cognitive performance age. Indeed, with experience

and the development of cognitive faculties, individuals typically improve performance in

strategic situations involving high-order reasoning (even though they sometimes reach a

ceiling during adolescence, as for example in Brocas and Carrillo (2021)). Our results

point to a fundamental impediment (perhaps biological) to randomize optimally. It also

suggests the existence of a powerful erroneous heuristic that governs behavior. This de-

fault choice is ingrained from a very young age. According to our results, it is difficult

to overcome even after experiencing both roles, obtaining feedback, encountering different

partners and, more generally, becoming older and therefore more cognitively mature indi-

viduals. The behavioral models we discuss (social efficiency and noisy introspection) offer

some partial but not fully satisfactory explanations for the observed departures.

The paper is organized as follows. In section 2, we lay out the experimental design

and procedures, with special emphasis on how we adapt it to our population. In section

3, we present the basic theory and predictions. In section 4, we analyze randomization

strategies and payoffs by age. In section 5, we discuss the use and interpretation of

deceptive messages. In section 6, we investigate dynamic trends and serial correlation. In

section 7, we offer some remarks and directions for future research. Additional analyses

and the choices of children from kindergarten and first grade can be found in the Appendix.

2 Experimental design

We conduct a variant of a two-person, hide-and-seek game with children and adolescents.

Working with young participants poses a number of methodological challenges. In Brocas

and Carrillo (2020a), we provide a review of the main difficulties as well as some general

guidelines to address them. We closely follow these principles in this paper.5

Participants. We recruited 228 children and adolescents from 2nd to 10th grade (7 to

16 years old) studying at the Lycée International de Los Angeles (LILA), a French-English

bilingual private school in Los Angeles. For comparison, we ran the same experiment with

34 young adult students (A) at the University of Southern California. Table 1 reports

the distribution of our 262 participants by grade and approximate age. We also ran a

shortened version of the experiment with 42 Kindergartners and 34 first graders from the

5In short, it is important (i) to adapt the length and procedures to a population with limited attention,
(ii) to offer age-appropriate incentives, (iii) to present the task in a way that subjects are not required
to possess strong analytical skills to participate, and (iv) to describe the characteristics of the children
population and include a benchmark adult comparison whenever possible.
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same school. The analysis of this population can be found in Appendix B.

LILA USC

Grade 2 3 4 5 6 7 8 10 A
Age 7-8 8-9 9-10 10-11 11-12 12-13 13-14 15-16 18+
# subjects 23 26 30 27 20 40 34 28 34

Table 1: Participants by grade and location.

Most experiments with children do not include an adult population. We believe it

is important to include an adult control group using identical procedures to establish a

behavioral benchmark (Brocas and Carrillo, 2020a). However, it is also key to recognize its

limitations. In our case, most students at LILA are from caucasian families of upper-middle

socioeconomic status. After high school, they go to well-ranked colleges in Europe and

North America (including USC and schools in the UC system). It is therefore an imperfect

but reasonable match for the adult population, despite some differences in individual

characteristics, such as nationality, family background or peer group size.

Notice also that our population is homogenous. As shown in previous research (Brocas

and Carrillo, 2021; Charness et al., 2019), demographic and socioeconomic factors have a

strong influence on the behavior of children. Pooling participants of different ages from

different schools is likely to introduce confounds that mask any developmental trajectory.

We avoid this problem by recruiting children from the same school, with similar social and

economic backgrounds, and who follow the same curriculum.

Games. The experiment consisted of two games always performed in the same order.

We started with two rounds of a graphical version of the two-person beauty contest, a game

with a strictly dominant strategy which we called the “Army game”. After a short break,

we ran the hide-and-seek game, which we called “Farmers and Pirates”. In this paper we

focus exclusively on the second game and relegate the analysis of the first game to Brocas

and Carrillo (2020b). Given that the two games focus on very different paradigms, we

have no reason to expect that outcomes in one game could affect choices in the other. In

any case, and to avoid any possible cross-contamination, we randomly and anonymously

rematched subjects between the two games.

General procedures. We ran 28 sessions at LILA and 3 sessions at USC, each with 8 to

12 subjects. Interactions were computerized through touchscreen PC tablets. Tasks were

programmed with the open source software ‘Multistage Games.’6 Sessions with school-age

students were run in a classroom at the school whereas adult sessions were run at the Los

6Downloading instruction can be found at http://multistage.ssel.caltech.edu.
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Angeles Behavioral Economics Laboratory at USC. Procedures were identical, except for

payments, as explained below. For school-age sessions, we tried to have males and females

from the same grade, but for logistic reasons sometimes had to mix participants of two

consecutive grades. Students from grades 9, 11 and 12 did not participate in the study

because they were taking or preparing for French or US national exams.

Farmers and Pirates. Participants played a three-action (n ∈ {3, 4, 8}), non-zero sum,

hide-and-seek game. Table 2 provides its normal-form representation.

Seeker
3 4 8

3 (0,3) (3,0) (3,0)

Hider 4 (4,0) (0,4) (4,0)

8 (8,0) (8,0) (0,8)

Table 2: Normal form representation of the hide-and-seek game

In studies with children and adolescents, it is crucial that differences in behavior re-

flect as much as possible developmental differences in strategic thinking as opposed to

developmental differences in attention, numerical skills, mathematical skills, or capacity

to understand rules (Brocas and Carrillo, 2020a). As a result, it is imperative to avoid

the abstract, formal presentations typical in experiments with adults such as, for exam-

ple, the normal form representation described in Table 2. We therefore developed for our

experiment a simple, graphical interface with an engaging story, which is accessible and

appealing to children as young as 5 years of age. We call it the “Farmers and Pirates”

game. Participants played three variants of that game, called Tasks 1, 2 and 3.

Task 1. Participants were randomly and anonymously matched in pairs. Each individ-

ual in a pair was assigned the role of “Farmer” or “Pirate”. The Farmer secretly chose one

of 3 islands to grow a flower. The three islands differed in n, the number of flowers that

would grow in that island, with n ∈ {3, 4, 8}. After the Farmer had made his choice, the

Pirate had to decide which island to raid. Whenever the Pirate chose the island where the

Farmer planted the flower, he would steal the n flowers. Otherwise, the Farmer would keep

the n flowers. The number of flowers that each island could grow was common knowledge

and displayed on the screen at all times. Participants played 12 rounds of Task 1 with the

same partner, alternating roles and without feedback between rounds. At the end of Task

1, participants obtained a summary of information with the number of times they had

won as a Farmer and as a Pirate and the total number of points (flowers) accumulated.7

7We cannot overemphasize the importance of an interactive interface with an intuitive design and an

6



Figures 1a and 1b present screenshots of Task 1 from the perspective of the Farmer and

the Pirate, respectively.8 In this example, the Farmer planted the flower in island 4 (flower

image) and the Pirate incorrectly raided island 3 (red circle).9 Figure 1c describes the

feedback at the end of Task 1.10

(a) Task 1. Farmer (b) Task 1. Pirate (c) Task 1. Feedback

Figure 1: Screenshots of Task 1 in the Farmers and Pirates game

Task 2. After receiving the summary feedback, we randomly formed new groups and

each participant in a pair was again assigned the role of Farmer or Pirate. Participants

would then play Task 2, which was identical to Task 1 with one exception: after choosing

the island where the flower was grown, the Farmer had to send a cheap talk message to

the Pirate, which consisted in highlighting one island. This message was displayed on the

screen of the Pirate, who could decide to look for the flowers in the island pointed by the

Farmer or anywhere else. Since we did not want to attach any negative connotation to a

misrepresentation of the choice, we explicitly told participants that, as Farmers, they could

highlight the island where they actually grew the flowers or any other island. Similarly,

as Pirates, they could look for the flowers in the island highlighted by the Farmer or in

attractive story both to facilitate comprehension and maximize attention. In the instructions (Appendix
C), we included two practice rounds (called “pretend matches”) to familiarize the participants with the
rules. We believe that most subjects understood the rules from the outset and virtually everyone figured
them out after a few rounds of Task 1. In our informal conversations after the experiment, no children
seemed confused. This is rather expected given that we framed the interaction literally as a hide-and-seek
game, a recreational activity that most participants have played since toddlerhood.

8Unlike Rubinstein et al. (1997), we were not interested in psychological considerations for the hiding
and seeking strategies. We avoided focal locations using a circular display with islands located equidistantly.
We randomly switched the locations of islands (e.g., at 1, 5 and 9 o’clock vs. at 2, 6 and 10 o’clock, etc.)
as well as the location of the high- and low-value islands.

9To implement their choice, participants had to tap with their finger on the desired island. They could
(and often would) change their mind and switch islands as many times as they wanted. A decision was
final only after pressing the “OK” button.

10It corresponds to a test session with 16 instead of 12 rounds. Success is captured with a green smiling
face and failure with a red frowning face.
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any other one.11 Figures 2a and 2b present screenshots of Task 2 from the perspective

of the Farmer and the Pirate. In this example, the Farmer planted the flower in island 3

(flower image) and highlighted island 4 (blue circle). The Pirate observed that island 4

was highlighted (blue circle) but correctly raided island 3 instead (red circle).

(a) Task 2. Farmer (b) Task 2. Pirate

Figure 2: Screenshots of Task 2 in the Farmers and Pirates game

Task 3. After receiving the summary feedback from Task 2 (which took the same

form as the feedback in Task 1), participants moved to Task 3, where new groups were

randomly formed and each participant in a pair was again assigned the role of Farmer or

Pirate. Task 3 was identical to Task 1 with three exceptions. First, participants played 24

rounds instead of 12. Second, instead of alternating roles, they played 12 rounds in one

role then switched and played 12 rounds in the other role, always with the same partner.

Third, they received feedback after each round instead of only at the end of the task: their

choice of island and whether they won or not.12 This information would fill up as rounds

progressed. Figures 3a and 3b present screenshots of Task 3 from the perspective of the

Farmer and the Pirate. In this example, participants are currently in the fourth round.

The Farmer has successfully hidden the plants in islands 8 and 3 in the first two rounds

whereas the Pirate has successfully raided island 4 in the third round.13

Summing up, Task 1 studies the basic problem of randomization in asymmetric hide-

and-seek games, Task 2 adds the effect of cheap talk messages, whereas Task 3 incorporates

feedback. A sample of instructions is included in Appendix C.

Notice that our set up does not provide as much data as some traditional experiments

(e.g., Ochs (1995)) where mixed strategies are elicited in each round (instead of inferred

11In fact, the Farmer’s decision was framed as “TRICK the pirate” to make clear that the message could
but did not have to be truthful.

12While it is typically preferable to introduce only one change at a time, we believed that feedback in
Task 3 would be more salient if participants did not alternate roles.

13To avoid overwhelming participants with information, we decided not to present the choice of the other
person, and only reported success (green smiling face) or failure (red frowning face).
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(a) Task 3. Farmer (b) Task 3. Pirate

Figure 3: Screenshots of Task 3 in the Farmers and Pirates game

from the behavior across rounds) and participants play significantly more times. This loss

of valuable information decreases the statistical power of our analysis but it is a necessary

compromise given the characteristics of our population.14

Payments. During the experiment, subjects accumulated one point per flower. Rather

than equalizing payment across ages, we calibrated the incentives to account for differences

in marginal value of money (see Brocas and Carrillo (2020a)). To this purpose, we imple-

mented three different payment rules. USC and LILA students from grade 6 and above

had points converted into money at the rate of $0.08 and $0.06 per point respectively,

paid immediately at the end of the experiment with an amazon e-giftcard. USC students

also received a $5 show-up fee. For elementary school participants (grades 2 to 5 as well

as K and 1 in the shortened version), we set up a shop with 20 to 25 pre-screened, age

appropriate toys and stationary.15 Different toys had different point prices. Before the

experiment, children were taken to the shop and showed the toys they were playing for.

They were instructed about the point price of each toy and, for the youngest subjects, we

explicitly stated that more points would result in more toys. At the end of the experiment,

subjects learned their point earnings and were accompanied to the shop to exchange points

for toys. We made sure that every child earned enough points to obtain at least three

toys.16 Changing the medium of payment is unusual in economics. However, we think

it is key in order to try and homogenize within our population the value of the rewards

14Despite the new, highly creative approaches to elicit probabilistic choices (Fragiadakis et al., 2019),
we believe they are still excessively hard to grasp for young participants.

15These included gel pens, bracelets, erasers, figurines, die-cast cars, trading cards, fidget spinners, apps,
calculators and earbuds among others.

16The procedure emphasizes the importance of accumulating points while making the experience enjoy-
able. Children are familiar with the method of accumulating points that are subsequently exchanged for
rewards since it is commonly employed in fairs and arcade rooms. We spent an average of $4 in toys per
child, which is arguably more than usual in economic experiments with elementary school children.
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instead of the rewards themselves.

Other information. The Farmers and Pirates game lasted around 60 minutes and the

entire experiment around 75 minutes. Average earnings for the Farmers and Pirates game

were $8.1 (LILA) and $10.5 (USC), given the 33% increase in conversion rate. Total

earnings averaged $11.3 (LILA) and $16.2 (USC), without counting the $5 show-up fee

at USC. At the end of the experiment, we asked participants to report their gender. For

the data analysis, we will group the school-age students in 4 grade categories, 2-3 (ages

7 to 9, 49 subjects), 4-5 (ages 9 to 11, 57 subjects), 6-7 (ages 11 to 13, 60 subjects),

8-10 (ages 13 to 16, 62 subjects), and denote by A (34 subjects) our young adult control

group. For the statistical analysis, we perform t-tests for comparisons across age groups

and tasks, as well as tests of comparisons of proportions. Unless otherwise noted, tests

are implemented with False Discovery Rate (FDR) correction for multiple comparisons

whenever appropriate. Last, in the regression analysis, we compute clustered bootstrap

standard errors to correct for within subject correlations.

3 Theory and predictions

Farmers and Pirates is a 3 × 3 asymmetric, hide-and-seek game, in which the action h

of the hider (Farmer) is to hide the prize in one of 3 possible locations h = n ∈ {a, b, c}
and the action s of the seeker (Pirate) is to seek the prize in one of these 3 locations

s = n′ ∈ {a, b, c}. The payoff of hider and seeker are (n, 0) if n 6= n′ and (0, n) if n = n′.

Let hn ≡ Pr[h = n] and sn ≡ Pr[s = n] be the probabilities of hiding in n and seeking

in n, respectively. Given the conflict of interests, there is a unique Nash equilibrium

(h∗a, h
∗
b , h
∗
c , s
∗
a, s
∗
b , s
∗
c) in mixed strategies. In an equilibrium, the hider chooses h∗n so that

the seeker is indifferent between looking in any of the three locations and the seeker

chooses s∗n so that the hider is indifferent between hiding in any of the three locations.

Since seeking in n has an expected payoff of nhn for the seeker and hiding in n has an

expected payoff of n(1 − sn) for the hider, an interior mixed strategy Nash equilibrium

satisfies the following system of equations:17

a h∗a = b h∗b ; a h∗a = c h∗c ; h∗a + h∗b + h∗c = 1; h∗n > 0 ∀n

a(1− s∗a) = b(1− s∗b); a(1− s∗a) = c(1− s∗c); s∗a + s∗b + s∗c = 1; s∗n > 0 ∀n

The solution has the following immediate general consequence:

if a > b > c then h∗a < h∗b < h∗c and s∗a > s∗b > s∗c . (1)

17Under certain conditions, we can obtain corner solutions. We choose the parameters in our experiment
to ensure that the theoretical solution is interior for all three locations. This ensures that deviations from
equilibrium can go in either direction.
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Solving the system, we get as the interior solution:

h∗a =
1
a

1
a + 1

b + 1
c

; h∗b =
1
b

1
a + 1

b + 1
c

; h∗c =
1
c

1
a + 1

b + 1
c

s∗a =
1
b + 1

c −
1
a

1
a + 1

b + 1
c

; s∗b =
1
a + 1

c −
1
b

1
a + 1

b + 1
c

; s∗c =
1
a + 1

b −
1
c

1
a + 1

b + 1
c

(2)

Expected payoffs of hider and seeker are E∗h =
2

1
a + 1

b + 1
c

and E∗s =
1

1
a + 1

b + 1
c

.

x As in every game with a full support unique mixed strategy Nash equilibrium, players

randomize between actions so as to make the opponent indifferent between alternatives. In

our setting, it implies that the seeker must look more frequently in the high value location

whereas the hider must (perhaps counterintuitively) select more frequently the low value

location (see Eq. 1). With three locations, the hider has twice as many winning locations

as the seeker. Since equilibrium payoffs are identical across locations, the payoff of hiders

should, in equilibrium, be twice as a high as the payoff of seekers. Finally, our problem

is built in a way that the strategy of the hider determines the size of the prize whereas

the strategy of the seeker determines the sharing of the prize. Therefore, if individuals

do not follow the theoretical probability mixture, aggregate payoffs may be increased or

decreased depending on whether the person who deviates is the hider or the seeker.18

Our experimental treatment corresponds to a = 8, b = 4, c = 3. Using Eq. 2, the

mixed-strategy Nash equilibrium is interior and given by:

s∗8 =
11

17
, s∗4 =

5

17
, s∗3 =

1

17
, and h∗8 =

3

17
, h∗4 =

6

17
, h∗3 =

8

17
, with E∗s =

24

17
, E∗h =

48

17

Under choice independence, the expected equilibrium probabilities of obtaining a positive

payoff are:

p∗s =
∑
n

s∗n h
∗
n =

71

289
' 0.246 and p∗h = 1−

∑
n

s∗n h
∗
n =

218

289
' 0.754

These are point estimates based on the parameters of our design. We do not expect

participants to play exactly at equilibrium. In fact, given previous knowledge of experi-

mental results on mixed strategies games, we anticipate that deviations will occur. Instead

of testing the theory strictly speaking, we test two types of properties. First, we consider

general qualitative properties implied by theory which we expect participants to follow, at

18For example, if the hider chooses the high (low) location excessively often, the sum of both players’
payoffs will be higher (lower) than in equilibrium.
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least in some age groups. Second, we formulate hypothesis on the expected deviations from

theory. We summarize below our predictions regarding choices, messages and feedback.

Prediction P1. Choices. In Tasks 1, 2 and 3:

(i) h8 < h4 < h3, s8 > s4 > s3, Eh ' 2Es and ph ' 3 ps.

(ii) Choices in each role are positively correlated across tasks.

(iii) Choices in each task are negatively correlated across roles.

According to P1(i), participants should hide most often in the low-value location and seek

most often in the high-value location. Also, payoffs should be significantly higher (by a

factor of two) for hiders than for seekers. Finally, since participants seek more frequently

but hide less frequently in the high-value location, the probability of success for seekers

must, in equilibrium, be lower than under uniform choice (p∗s < 1/3 and p∗h > 2/3). In our

case, an unsuccessful raid should be around three times as likely as a successful one. P1(ii)

states that while adding messages (Task 2) and feedback (Task 3) may have some effect

on the choices of individuals, it should not fundamentally change their randomization

patterns (that is, each individual will follow similar principles in all three tasks). Finally,

P1(iii) implies that while we expect many participants to play as predicted by theory (low

h8 and high s8), we also anticipate that individuals who deviate will play the opposite

(high h8 and low s8), both of which would result in a negative correlation of choices by

hiders and seekers.

Next, for Task 2, let us call m = n ∈ {a, b, c} the hider’s (truthful or untruthful)

message m stating that the chosen location is n, and mn ≡ Pr[m = n] the probability

that the hider sends message n. We denote by hn
′

n ≡ Pr[h = n |m = n′] the conditional

probability that the hider chooses location n after sending message n′ and by sn
′

n ≡ Pr[s =

n |m = n′] the conditional probability that the seeker looks in location n after receiving

message n′. Unlike the original cheap talk literature where agents have partial alignment

of preferences (see Crawford and Sobel (1982) and the experiments by Cai and Wang

(2006) and Wang et al. (2010)), individuals have opposing interests in our game. As a

result, the message of the hider should be uninformative and ignored by the seeker. We

summarize this idea with the following prediction.

Prediction P2. Messages. In Task 2: hn
′

n = hn ∀ n, n′ and sn
′

n = sn ∀ n, n′.

It is important to highlight that the theory does not constrain the frequency of each

message mn. P2 only states that the message sent by the hider must not convey any

information that the seeker could use to his own advantage. A testable implication of this

result is that, conditional on the location chosen, truthful messages are neither more nor

less frequent than deceptive ones: hnn = hn
′

n when n 6= n′. Similarly, trusted messages are

neither more nor less frequent than untrusted ones: snn = sn
′

n when n 6= n′.
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The second pillar of the theory states that choices should be serially uncorrelated.

This prediction cannot be tested in Tasks 1 and 2. Since participants do not observe the

past choices of their rival, the entire behavior reduces to the choice of a mixed strategy

profile. In Task 3, participants observe past choices and outcomes so a test of dynamic

behavior is possible. Generally speaking, the theory predicts that location choices in round

t′ should not give any relevant information to participants regarding location choices in

round t (> t′), since it could be used to the other party’s advantage. Similarly, the outcome

in round t′ (which, for each role, can be summarized as “win at t′” or wt′ and “lose at

t′” or lt
′
), should not be indicative of the behavior in t (> t′). There are many ways in

which individuals can fail to be dynamically unpredictable. Given our limited dataset (12

observations per role for each individual), we cannot reliably test for all possible forms of

serial correlation. We therefore decided to focus on two salient properties of choices and

outcomes. Denote by htn,n′ ≡ Pr[ht = n |ht−1 = n′] the conditional probability that the

hider chooses location n in round t after choosing location n′ in the immediately preceding

round (and the same for seekers with stn,n′). Denote also htn,n′(w) ≡ Pr[ht = n |ht−1 =

n′, wt−1] and htn,n′(l) ≡ Pr[ht = n |ht−1 = n′, lt−1] the same probabilities, except that we

also condition on whether the hider won or lost in round t − 1 (and, again, the same for

seekers with stn,n′(w) and stn,n′(l)). We have the following predictions.

Prediction P3. Feedback. In Task 3:

(i) htn,n = htn,n′ and stn,n = stn,n′ ∀ t, n, n′.
(ii) htn,n(w) = htn,n(l) and stn,n(w) = stn,n(l) ∀ t, n.

According to P3(i), choices in a given round should not be indicative of choices in the

following one. Existing findings suggest that individuals alternate excessively between

options when they try to be unpredictable both in individual decision making problems

(Bar-Hillel and Wagenaar, 1991; Camerer, 1995) and in mixed strategy games (Brown

and Rosenthal, 1990; Camerer, 2003). If that bias is also present in our setting, it will

translate into insufficient repetition of locations both as hiders (htn,n < htn,n′) and as seekers

(stn,n < stn,n′). Such departures, if correctly interpreted, could be exploited by a rival.

Similarly, P3(ii) indicates that outcomes should not affect the choices made immediately

after. In our setting, and to focus the discussion, we consider choice repetition, and predict

that it should not depend on whether the last choice resulted in success or failure.

Overall and despite the discussed data limitations, our experimental setup provides a

rich set of testable predictions in terms of choices, messages and feedback. In section 4,

we study and compare the choices and payoffs of participants in both roles, across ages

and across tasks (P1). We then analyze in section 5 the marginal effect of message provi-

sion (hider) and message interpretation (seeker) on choices and payoffs (P2). We finally
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investigate in section 6 how feedback affects the dynamic ability to remain unpredictable

and/or exploit the predictability of the rival (P3). Each of these predictions is studied in

the context of age, the main variable of interest in our experiment.

4 Choices

4.1 Decisions to hide and seek: aggregate behavior

From now on, we adopt the terminology used in the experiment, namely “Farmer” and

“Pirate”, to refer to the roles of hider and seeker, respectively. The first step in our analysis

consists in determining aggregate hide and seek choice frequencies. Figure 4 describes for

each school-age group the average choices of Farmers (hn) and Pirates (sn) in Tasks 1, 2

and 3. For comparison, we include the behavior of the control adult population (A), as

well as the theoretical predictions h∗n and s∗n (Th).
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Figure 4: Distribution of decisions as Farmer (top) and Pirate (bottom) in Tasks 1, 2
and 3 by age group.

For the analysis below, we focus the comparison on the choice of location n = 8, the
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most salient one. Behavior as Farmers is similar across all school-age groups in all three

tasks. Their behavior is also very similar to that of adults with some minor exceptions

(higher choice of h8 by 4-5 and 8-10 age groups in Task 3, p = 0.016 and p = 0.016).

The likelihood that participants choose n = 8 is consistently higher than if they behaved

randomly (h8 > 1/3, p < 0.05) and consequently also significantly higher than predicted

by theory (h8 > h∗8 = 3/17, p < 0.001) in all tasks and all age groups, including adults.

Behavior as Pirates is also very similar across all school-age groups in all tasks (only

8-10 choose s8 more than 2-3 in Task 3, p = 0.016). However, s8 is significantly lower

in all school-age groups than in the adult population in all tasks (p < 0.02), with the

exception of 8-10 in Task 3. All school-age participants choose n = 8 in all tasks more

often than if they behaved randomly (s8 > 1/3, p < 0.001) but less than predicted by

theory (s8 < s∗8 = 11/17, p < 0.001). Adults choose n = 8 as predicted by theory in Tasks

1 and 2 and less than predicted by theory in Task 3.

Comparing the behavior of participants across tasks, we notice very small and non-

systematic differences in the school-age population both as Farmers (higher choice of h8
in Task 2 for 4/5 and 8/10) and as Pirates (lower choice of s8 in Task 1 for 8/10). Adults

behave similarly in Tasks 1 and 2 and differently in Task 3 under both roles (closer to

theory as Farmers and farther away as Pirates, p < 0.02).

To sum up, although school-age children respond to the payoff asymmetries (hn and sn
are different from 1/3), P1(i) is not supported by the data: subjects respond incorrectly

as Farmers (h∗8 < 1/3 < h8) and correctly but insufficiently as Pirates (1/3 < s8 < s∗8). We

found no differences across school-age subjects in either role and small differences when

compared to adults (only in the Pirate role). Behavior of the school-age population is very

similar across tasks, suggesting that adding messages and feedback does not affect their

choices substantially. Feedback affects marginally and unsystematically the behavior of

adults. Overall, there is a robust heuristic tendency to favor the high yield location (n = 8)

in both roles. At the same time, even our youngest participants realize the importance of

unpredictability, as reflected by the absence of an overwhelmingly favored option.

4.2 Payoffs

It is important to determine whether the documented deviations have significant payoff

consequences. Table 3 (left) presents the average per-round payoffs by task (and combining

all three) in each age group. Table 3 (right) describes the payoffs of an individual who

would best respond to the empirical distribution of choices in his age group. We include

the location [hn] and [sn] pertaining to the optimal best response strategy. The final

column reports the predictions of the theory, as developed in section 3.

From section 4.1 we know that Pirates play relatively close to equilibrium in all school-
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Empirical† Best Response§ Theory
2-3 4-5 6-7 8-10 A 2-3 4-5 6-7 8-10 A

Task 1
Farmer 3.15 3.13 3.03 3.18 2.76 4.41 4.21 4.40 4.26 3.04 2.82

(0.17) (0.16) (0.18) (0.19) (0.27) [h8] [h8] [h8] [h8] [h4] —
Pirate 2.11 2.49 2.24 2.57 3.02 3.24 3.53 3.13 3.91 4.00 1.41

(0.19) (0.17) (0.17) (.020) (0.33) [s8] [s8] [s8] [s8] [s8] —

Task 2
Farmer 3.06 3.53 3.41 3.08 2.54 4.11 4.16 4.04 3.66 3.18 2.82

(0.20) (0.16) (0.18) (0.19) (0.26) [h8] [h8] [h8] [h8] [h4] —
Pirate 2.61 2.49 2.21 2.84 3.21 3.86 4.42 3.60 4.37 3.92 1.41

(0.20) (0.18) (0.19) (0.19) (0.35) [s8] [s8] [s8] [s8] [s8] —

Task 3
Farmer 3.43 3.26 3.18 3.21 3.09 4.41 4.05 4.06 3.70 3.31 2.82

(0.12) (0.12) (0.10) (0.12) (0.12) [h8] [h8] [h8] [h8] [h8] —
Pirate 2.10 2.36 2.33 2.42 2.12 3.54 3.74 3.51 3.70 2.96 1.41

(0.11) (0.13) (0.12) (0.12) (0.16) [s8] [s8] [s8] [s8] [s8] —

All
Farmer 3.27 3.29 3.20 3.17 2.87 4.34 4.12 4.14 3.83 3.21 2.82

(0.10) (0.08) (0.09) (0.09) (0.14)
Pirate 2.23 2.42 2.28 2.56 2.62 3.55 3.86 3.44 3.92 3.46 1.41

(0.09) (0.09) (0.09) (0.10) (0.18)

† (standard errors in parenthesis); §[best response location in brackets]

Table 3: Empirical and best response per-round payoff of Farmers and Pirates

age groups. This means that payoffs of Farmers will be close to theoretical predictions,

independently of their behavior. This is precisely what we observe in Table 3. Participants,

however, leave some money on the table: Farmers would have earned significantly higher

gains (up to 56.4% more, p < 0.001) if they had best responded by setting h8 = 1.

Outcomes are very different for Pirates. We know that Farmers play the opposite of

the theoretical predictions, with excessive number of choices of the high-value location.

Participants benefit from such departures when playing as Pirates with very significant

gains (between 48.9% and 101.4% payoff increases relative to theory, p < 0.001). Such

gains would be even higher (up to 213% increase) had they always chosen location n = 8.19

To sum up, the behavior of Farmers determines the size of the pie whereas the behavior

19It is interesting that our adults make the least money: their higher winnings as Pirates due to their
better exploitation of Farmers does not compensate for their smaller gains as Farmers. Those differences
are not statistically significant after FDR corrections.
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of Pirates determines the relative gains of players. The excessive proportion h8 by Farmers

implies that total gains are very significantly above equilibrium. The close to correct

proportion s8 by Pirates means that the latter recoup a large fraction of those benefits.

Overall and against P1(i), Pirates obtain not only a larger amount but also a larger share

of profits than predicted by theory (38.0% to 55.8% instead of 33%). In Appendix A1,

we discuss the proportion of rounds that individuals win in each role. We show that, also

against P1(i), Pirates win significantly more often than predicted by theory.

4.3 Individual behavior across tasks and roles

While the results in section 4.1 suggest that aggregate choices are similar across tasks, it

is possible that different individuals treat tasks differently. We therefore explore behavior

at a more disaggregate level. For each individual i, we determine the proportion of choices

in location n = 8 as Farmers (hi8) and as Pirates (si8) in each task. We then compute the

Pearson Correlation Coefficient (PCC) between each pair of tasks within each age group.

The results are presented in Table 4.

2-3 4-5 6-7 8-10 A
Tasks hi8 si8 hi8 si8 hi8 si8 hi8 si8 hi8 si8

1 & 2 0.40∗∗ 0.39∗∗ 0.50∗∗∗ 0.39∗∗ 0.49∗∗∗ 0.34∗∗ 0.52∗∗∗ 0.57∗∗∗ 0.61∗∗∗ 0.26

1 & 3 0.43∗∗ 0.05 0.38∗∗ 0.28∗ 0.29∗ 0.58∗∗∗ 0.32∗ 0.35∗∗ 0.29 0.40∗

2 & 3 0.33∗ 0.28 0.32∗ 0.41∗∗ 0.36∗∗ 0.45∗∗∗ 0.37∗∗ 0.52∗∗∗ 0.42∗ 0.47∗∗

∗ p = 0.05; ∗∗ p = 0.01; ∗∗∗ p = 0.001

Table 4: Correlation of choices across tasks by age group

In support of P1(ii), Table 4 shows a high and statistically significant correlation of

individual behavior across tasks in both roles for participants in age groups 4-5, 6-7 and

8-10 and, to a lesser extent, in our youngest and control groups. Overall, messages and

feedback have only a small impact on choices.

We next study the correlation across roles. Indeed, while we have shown mistakes in

both roles, we do not know if they are committed by the same or different individuals. The

former would result in a negative correlation across roles while the latter would result in a

positive one. We present in Figure 5 (left) a heatmap with the choices of our participants.

We combine all tasks and represent each individual i by (hi8, s
i
8), the proportion of choices

in location n = 8 (out of the 24) as a Farmer (horizontal axis) and as a Pirate (vertical

axis). The theoretical prediction (h∗8, s
∗
8) is represented by a red x. Figure 5 (right) depicts

the cumulative distribution functions as Farmers and Pirates.
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Figure 5: Individual fractions of hi8 and si8 across tasks: heatmap (left) and c.d.f. (right)

In contradiction to P1(iii), we notice a positive (0.47) and statistically significant

(p < 0.0001) correlation across roles. This is best illustrated in Figure 5 (left), where we

observe a concentration of choices around the 45◦ line. No subject behaves as predicted

by theory: they all miss at least one dimension, and more often both dimensions of the

equilibrium randomization. At the same time, all individuals try to be unpredictable and

frequently change locations. This is best reflected in Figure 5 (right), where almost no

individual chooses n = 8 less than 25% or more than 75% of the time in either role (despite

the fact that h∗8 = 0.18). Finally, we performed a Wilcoxon signed-rank test for matched

pairs and found that the c.d.f. of hi8 and si8 are significantly different from each other (p

= 0.022), with Pirates seeking in n = 8 more often than Farmers hiding in that location.

4.4 Determinants of behavior

We finally run OLS regressions at the individual level to identify the determinants of

choice in each role, and to assess their overall contribution to behavior. As in Figure 5, we

consider the proportion of choices by an individual in location n = 8 across all three tasks

(out of 24 decisions), and study separately their behavior as a Pirate (si8) and as a Farmer

(hi8). We include as explanatory variables the age-group (2-3 is the omitted variable),

Task (Task 1 is the omitted variable) and gender (Male = 1). In a second step, we also

include the subject’s behavior in the other role. The results are presented in Table 5.

The regressions confirm previous results. Behavior in both roles is constant in our

school-age population, except for a small increase in si8 and hi8 in the older school group 8-

10. The adult population plays closer to theory as Pirates and no different from children as
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Pirate Farmer
si8 si8 hi8 hi8

hi8 — 0.212∗∗∗ — —
(0.045)

si8 — — — 0.244∗∗∗

(0.052)
4-5 0.007 -0.001 0.036 0.034

(0.025) (0.024) (0.028) (0.027)

6-7 0.005 0.010 -0.024 -0.025
(0.024) (0.024) (0.027) (0.025)

8-10 0.055∗ 0.043 0.056∗ 0.042
(0.028) (0.026) (0.028) (0.026)

A 0.191∗∗∗ 0.189∗∗∗ 0.008 -0.038
(0.034) (0.034) (0.039) (0.040)

Task 2 0.040∗∗ 0.026 0.064∗∗∗ 0.054∗∗∗

(0.015) (0.016) (0.015) (0.015)

Task 3 0.019 0.019 0.001 -0.004
(0.014) (0.014) (0.015) (0.014)

Male 0.110∗∗∗ 0.097∗∗∗ 0.062∗∗ 0.035
(0.018) (0.017) (0.020) (0.020)

Const. 0.390∗∗∗ 0.307∗∗∗ 0.393∗∗∗ 0.297∗∗∗

(0.020) (0.028) (0.022) (0.028)

Adj. R2 0.146 0.188 0.049 0.097
# obs. 786 786 786 786
# clusters 262 262 262 262

(clustered bootstrap standard errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 5: OLS regressions of choice as Pirate and Farmer

Farmers. The strong correlation of choices in both roles is also reflected in the regressions,

although the exercise does not allow us to establish causality. Interestingly, males choose

n = 8 significantly more often than females in both roles, thereby playing closer to theory

as Pirates but farther away as Farmers. This could reflect the documented tendency

of males to be attracted to socially-efficient outcomes more than females (Andreoni and

Vesterlund, 2001) although, as discussed in section 4.5, few participants can be described

as social efficiency maximizers. The high-value location is also more prevalent in Task 2,

a significant difference that was not apparent in the analysis of section 4.1.
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4.5 The underpinnings of suboptimal randomization

As previously mentioned, significant departures from optimal randomization have been

discussed since the early experimental literature (O’Neill, 1987; Rapoport and Boebel,

1992; Ochs, 1995). Goeree and Holt (2001) already pointed out the difference between

mixing in an “intuitive” and a “counterintuitive” role. However, they argue that subjects

in the intuitive role understand and exploit the difficulties faced by their rivals. This

conclusion is not supported in our experiment, whether we consider the adult control or

any school-age group. Indeed, our participants gain experience in both roles. Therefore,

if they realized and actively exploited as Pirates the severe shortcomings of Farmers, they

would not incur in such deficient behavior the next time they adopted the role of Farmers.

Instead, we observe no significant differences at the aggregate level in behavior across

tasks in each role, as well as strong positive correlation of behavior at the individual

level across tasks also in each role. The result suggests that the outcome may be based

on a powerful heuristic. Such incorrect shortcut reasoning is developed early in life and

it is hard to overcome with age, despite the natural development of cognitive abilities.

Intuitive presentation, repetition, messages and feedback are also insufficient drivers of

optimal behavior. Next, we briefly review two behavioral theories that may account for

the observed deviations.

Social efficiency. Since payoffs are substantially above the Nash equilibrium predic-

tions, a natural possibility is that individuals implicitly coordinate on the fair and socially

efficient outcome of the dynamic game. This amounts to Farmers always hiding in n = 8

and Pirates seeking in that location only one-half of the time.20 Such behavior necessitates

a significant forward looking and self-restraint ability, since the temptation to seek in the

high location knowing the hider’s behavior is overwhelming. And yet, alternating behavior

leading to long run fair and Pareto optimal outcomes is feasible, as it has been documented

in related games on adults such as the repeated battle-of-the-sexes (Ioannou and Romero,

2014). On the other hand, individuals in our game do not observe past outcomes within

each task, which makes trust and coordination significantly more difficult. Also, social

preferences in children are known to evolve from selfish to altruistic (Fehr et al., 2008) and

dynamic behavior from myopic to strategic forward looking (Brocas et al., 2017). This

would indicate important changes in our window of observation.

To test this theory, we studied whether the behavior of our participants was consistent

20As standard in the experimental economics literature, we only take into account the payoffs of par-
ticipants when determining the socially-efficient outcome. If we include the cost for the experimenter,
the game becomes a zero-sum game and every outcome is socially efficient. Naturally, one could adopt
an intermediary approach where the cost for the experimenter is positive but smaller than the gain for
participants.
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with always hiding in n = 8 and seeking one-half of the time in n = 8. Given the

small number of observations at the individual level, we ran binomial tests, which require

specifying a probability under the null hypothesis. We set s08 = 0.5 and varied h08 between

1 and 0.8. We categorized a participant as socially-efficient in a given role when we

did not reject the null hypothesis in that role. However, an individual concerned with

social efficiency should presumably play according to this hypothesis in both roles. We

therefore categorized a participant as an overall socially-efficient individual if we did not

reject the null hypothesis in either role. Table 6 reports the proportion of socially-efficient

participants in each age group (by role and overall) when s08 = 0.5 and h08 = 0.8.

2-3 4-5 6-7 8-10 A

Pirates 1.00 0.93 0.92 0.84 0.59

Farmers 0.04 0.14 0.08 0.16 0.08

Overall 0.04 0.12 0.07 0.08 0.03

Table 6: Proportion of socially-efficient individuals

While there is strong support for the social efficiency hypothesis in Pirates, there is

much less support for social efficiency in Farmers, and little evidence that participants

target social efficiency in both roles (in particular, there is not a single overall socially-

efficient individual when h08 = 1). The result suggests that the number of individuals purely

driven by social efficiency is small. On the other hand, a large fraction of individuals hide

in the high-value location more often than predicted by theory and seek in the high-value

location less often than predicted by theory (hi8 > h∗8 and si8 ∈ (0.5, h∗8), see Figure 5). It

is therefore possible that some individuals are mainly concerned with their own payoff but

they still put some weight on social efficiency.

Quantal Response Equilibrium (QRE). Noisy introspection has received support in the

literature as a possible explanation for the observed deviations in games with a unique

mixed strategy equilibrium (McKelvey and Palfrey, 1995). However, subsequent research

has also pointed out some problems in other mixed strategy games (McKelvey et al., 2000).

We therefore decided to bring this stochastic best response theory to the data.

QRE is a one-parameter model that encompasses both random choice and Nash equi-

librium as extreme cases. The econometric strategy consists in running an algorithm that

computes a likelihood for each noise parameter and selects the value for which the highest

likelihood is returned. A best fit away from no noise signifies that a noisy model of strate-

gic choice outperforms Nash. Table 7 presents the MLE estimated parameter for each age

group. Details of the procedure are relegated to Appendix A2.
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2-3 4-5 6-7 8-10 A

MLE 0.23 0.28 0.28 0.34 0.65

Table 7: Maximum Likelihood estimation of noise by age group

Given that QRE offers additional options to fit the data, it is bound to perform better

than Nash. Still, there are some objective reasons why QRE is a candidate to explain

behavior in our case. First, the set of possible equilibria generated by the QRE model is

quite restricted. Observing that the data lie close to predictions provides support for the

model. Second, it is possible to quantify the relative likelihood of the best fit compared to

Nash, and to run post-hoc inferential tests to assess whether the best fit is consistent with

the data in general. Appendix A2 discusses the benefits and limits of the QRE model in

light of our estimates.

To sum up, social efficiency has a difficult time fitting the behavior of individuals,

mainly because no participant hides in the high value location all the time. As for QRE,

it is hard to interpret the meaning of stochastic mistakes when the best response is al-

ready stochastic. A third possibility is that participants do not think in terms of social

preferences or best response behavior. Instead, they use a very simple heuristic reasoning:

they randomize but add an extra weight in the most attractive location, so that when they

win, they win “big.” More generally, the problem might lie in the unrealistic expectation

of finding one theory that explains the deviations of all participants. More likely, different

individuals deviate for different reasons, all contributing to the observed discrepancies.

Finally, small variants could help discriminate between theories. For example, it would

be interesting to modify this experiment by allowing Pirates to seek in two locations out of

three rather than only one. Although, theory predicts the exact same equilibrium behavior

for Farmers as in our current game (h∗∗8 = h∗8) and a qualitatively similar behavior for

Pirates (s∗∗8 > s∗∗4 > s∗∗3 ), our conjecture is that behavior in both roles would move closer

to theory or even reverse the bias (h8 < h∗∗8 and s8 > s∗∗8 ). Indeed, Farmers may expect

Pirates to always search in the high value location and to randomize between the other two

locations, in which case they could respond by rarely hiding in n = 8. If this conjecture

holds, it would also run against the theories discussed above, thereby opening the door to

new interpretations.
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5 Messages

5.1 The message game

In Task 2, Farmers send a cheap talk message to Pirates regarding the hiding location,

and Pirates observe the message before choosing where to seek. Theory predicts that ra-

tional individuals should anticipate the conflict of preferences: Farmers should randomize

messages in a way that the hiding location remains unpredictable and Pirates should con-

sequently disregard the messages, making this option irrelevant. This argument is only

correct if they both play at equilibrium. In this section, we study in more detail the

marginal implications of the message game. We first document in Figure 6 the frequency

of messages sent by Farmers in the different age groups.
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Figure 6: Messages sent by Farmers in each age group.

Subjects in all age groups choose m8 more frequently than other messages (p < 0.05),

with no significant differences between m3 and m4. While this difference is interesting, it

is important to realize that theory is silent on the relative frequencies of messages.

5.2 Truthfulness and credence

As developed in section 3, the key variable is the message informativeness (or lack of).

Recall that we have defined hn ≡ Pr[h = n] and hn
′

n ≡ Pr[h = n |m = n′] (and analogously

for sn and sn
′

n ). For each individual, we call tn ≡ hnn − hn the “truthfulness” of the

Farmer’s message n. To be unpredictable, tn should be 0. A positive number (hnn > hn)

reflects excessive truthfulness in location n, whereas a negative number (hnn < hn) reflects

insufficient truthfulness in location n. Either out-of-equilibrium deviation, would result

in a decreased payoff if correctly interpreted by the other party and an increased payoff if

misinterpreted. Finally, we summarize by t =
∑

nmn tn, the Farmer’s overall truthfulness.
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Analogously, for each individual we call cn ≡ snn − sn the “credence” of the interpre-

tation of the message received as a Pirate. In equilibrium, cn should also be 0. A positive

number (snn > sn) reflects gullibility, whereas a negative number (snn < sn) reflects skepti-

cism. Again, either deviation could be exploited by the other party. We also summarize

by c =
∑

nmn cn the Pirate’s overall credence.

Figure 7 reports the average truthfulness of the messages sent by Farmers (left) and

the average credence of the messages interpreted by Pirates (right) within each age group,

computed separately for each location (tn and cn) as well as in aggregate (t and c).21
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Figure 7: Truthfulness of Farmers (left) and credence of Pirates (right).

Our participants are excessively truthful Farmers in all age groups and for all messages,

although given the small number of observations, the effect is significant only for school-age

subjects 2-3 to 8-10 in the high-value location t8 (p < 0.05). The aggregate truthfulness

is significant in age groups 2-3, 4-5 and 6-7. Credence is typically positive too, although

there are some exceptions. On aggregate, there is significant gullibility only in 6-7 and

8-10. Overall, messages are mildly informative so P2 is not supported by the data. There

are also interesting differences in the use and interpretation of messages across school

age-groups: 2-3 and 4-5 are excessively truthful, 8-10 are excessively gullible and 6-7 are

both truthful and gullible. Finally, there is a positive correlation between truthfulness and

credence in the combined school population (PCC = 0.18, p < 0.01). When we look at

each age group separately, the significance persists only in 8-10 (PCC = 0.29, p < 0.05).

To sum up, the asymmetry between Farmers and Pirates in messages is similar to that

of location choices: message interpretation by Pirates best responds to the announcements

21Notice that we cannot compute tn for an individual who never sends message n and cn for an individual
who never receives message n. We therefore omit those individuals from the average of the age group.
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of Farmers (correctly believing them) while these announcements do not best respond to

the Pirates’ interpretation (incorrectly reporting truthfully). Again, the asymmetry is all

the more surprising that individuals alternate between roles and therefore gain significant

experience on both sides.

In Appendix A3, we compute the monetary consequences of the message game and

show that effects are small. Indeed, Pirates are somewhat gullible but Farmers fail to

exploit this bias, as they tend to send a truthful message. On the other hand, Farmers

are mostly truthful but so incorrect in their hiding behavior that their bias in messages

is, in comparison, largely irrelevant.

5.3 Determinants of behavior

Finally, we run OLS regressions at the individual level to identify the determinants of

message choice and message interpretation. We focus on the aggregate truthfulness (t)

and credence (c) of messages, respectively. The explanatory variables are age-group (2-3

is the omitted variable), gender (Male = 1) and the behavior of the individual in the

message game when playing in the other role. We present the results in Table 8.

The previous results are confirmed in these regressions. Truthfulness and credence are

strongly correlated across individuals, although causality cannot be established. Truth-

fulness is higher and credence is lower in our youngest school-age students (2-3) than in

our oldest ones (8-10), suggesting a different use and interpretation of deception across

ages. However, such differences have only minor payoff consequences. Finally, there is an

interesting gender effect: males are significantly less truthful than females. This result is

reminiscent of studies reporting that males lie more than females in the context of black

lies (Dreber and Johannesson, 2008) or when lies benefit both the liar and another person

(Erat and Gneezy, 2012). Still, other studies did not replicate those findings in adults

(Childs, 2012; Cappelen et al., 2013) or in children and teenagers (Bucciol and Piovesan,

2011; Glätzle-Rützler and Lergetporer, 2015), indicating that small differences in design

may affect these particular results.

6 Feedback

There are three main changes in Task 3 relative to Task 1: (i) participants play twice as

many rounds (24); (ii) they change roles only once after the first half of the task; and

(iii) they observe their rival’s decision at the end of each round, thereby allowing them to

adapt the strategy to observed choices and outcomes.
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Farmer Pirate
t c

c 0.229∗∗ —
(0.072)

t — 0.168∗∗

(0.053)
4-5 -0.022 -0.034

(0.037) (0.032)

6-7 0.009 0.024
(0.037) (0.032)

8-10 -0.077∗ 0.078∗

(0.037) (0.031)

A -0.054 0.011
(0.043) (0.037)

Male -0.050∗ 0.007
(0.024) (0.021)

Const. 0.115∗∗∗ 0.010
(0.030) (0.026)

Adj. R2 0.053 0.064
# obs. 262 262

(standard errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 8: OLS regressions of truthfulness and credence by Farmers and Pirates

6.1 Feedback from choices

While the theory predicts no significant changes in the randomization strategies when

past choices are observable (P3), there are numerous reasons why we may expect this

prediction not to hold. First, unpredictable randomization is difficult to achieve, even

when probabilities are known (Bar-Hillel and Wagenaar, 1991; Camerer, 1995). Also, a

subject may deviate assuming that the opponent will misinterpret the deviation and react

in the subject’s advantage. This is akin to the behavior in the message game, where it

is possible that Farmers were excessively truthful (incorrectly) expecting the skepticism

of Pirates while Pirates were gullible (correctly) expecting the truthfulness of Farmers.

Finally, some of our subjects are relatively young and inexperienced. We may, therefore,

observe differences across age groups due to a disparity in their ability to process past

information. Unfortunately, our limited dataset prevents us from conducting a full analysis

of serial correlation. We will therefore look for the presence (or not) of specific patterns.

Figure 8 reports the likelihood that a given individual chooses location n at date t as a
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function of their location n′ at t− 1, averaged over rounds 2 to 12 and over all individuals

in that age group. The information is presented separately for Farmers (htn,n′ , left) and

Pirates (stn,n′ , right). To help the visualization, we group together locations 3 and 4 under

the label “-8”.
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Figure 8: Persistence in location choice of Farmers (left) and Pirates (right) by age group.

Participants in age-groups 2-3, 4-5 and 6-7 are more likely to change the hiding location

as Farmers than to repeat the previous one. Formally, ht8,8 < ht8,−8 (which automatically

implies ht−8,−8 < ht−8,8). The difference is large (up to 17.0 p.p) and highly significant (p

< 0.002). We do not observe the same effect in 8-10 or A. The conclusion is similar–if

anything stronger–for Pirates. Our participants in age-groups 2-3, 4-5 and 6-7 are more

likely to alternate than to repeat seeking locations (st8,8 < st8,−8) with a large (up to 28.0

p.p) and highly significant (p < 0.004) difference. No effect is observed in 8-10 or A. As

with some previous results, this non-equilibrium behavior as Pirates is a best response to

their behavior as Farmers, while the behavior as Farmers is not a best response to their

choice as Pirates. Summing up, against P3(i), our young participants alternate excessively

between options in their attempt to be unpredictable.22

In Appendix A4, we analyze the reaction to outcomes and show that success or failure

in a given round has a negligible impact on the subsequent choice of the individual.

22When we consider all three locations separately, we obtain similar effects, although the significance is
reduced due to the smaller number of observations in each category.

27



6.2 Regression analysis of location changes across rounds

We also ran Probit regressions of the change in location between two consecutive rounds

t−1 and t. For the regressors, we included a dummy to capture the outcome in round t−1

(Win = 1 ), as well as dummies for location, with n = 3 being the omitted variable (Loc.4

and Loc.8 ). We also included a dummy FirstRole to control for order effects (whether the

individual started as a Farmer or as a Pirate) and a Period variable that takes values 2 to

12 to capture trend effects. Finally, we added the familiar age and gender dummies. The

results for Farmers (htn,n′) and Pirates (stn,n′) are reported in Table 9.

Farmer Pirate
htn,n′ stn,n′

Win 0.070 0.016
(0.053) (0.075)

Loc.4 -0.136 -0.155
(0.080) (0.094)

Loc.8 -0.455∗∗∗ -0.822∗∗∗

(0.077) (0.088)
FirstRole 0.029 0.050

(0.063) (0.068)
Period 0.016∗ 0.004

(0.008) (0.008)
4-5 -0.125 -0.036

(0.102) (0.099)

6-7 -0.131 -0.305∗∗

(0.102) (0.105)

8-10 -0.367∗∗∗ -0.472∗∗∗

(0.095) (0.107)

A -0.370∗∗∗ -0.524∗∗∗

(0.102) (0.098)

Male 0.077 -0.105
(0.064) (0.064)

Const. 0.730∗∗∗ 1.269∗∗∗

(0.104) (0.134)

AIC 3478 3252
# obs. 2876 2876

# clusters 262 262

(clustered bootstrap st. errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 9: Probit regressions of location changes by Farmers and Pirates
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According to these regressions, and in support of the analysis in Appendix A4, partic-

ipants do not change their behavior as a function of the payoff obtained in the preceding

round. In other words, strategies of the type “win-stay, lose-switch” or “win-switch, lose-

stay” are not prevalent in our experiment. We do observe, however, a lower tendency to

alternate in location n = 8 and by older participants (grade 8 and above as Farmers and

grade 6 and above as Pirates). Overall, the results confirm previous findings regarding

dynamic behavior: no effect of outcome and a tendency to alternate excessively in the

younger population.

7 Conclusion

We have reported the results of a hide-and-seek experiment with children and adolescents.

Given the opposite interests, equilibrium behavior requires players to be unpredictable

and impervious both to cheap talk messages and feedback. Our graphical paradigm and

developmental approach allows us to study foundational aspects of these predictions by

testing the evolution of choices from childhood to adulthood. The game features locations

with known but different values, which creates a natural way to study the relationship

between potential failures of unpredictability and payoff-saliency effects. We found that

the vast majority of participants favor the high-value location not only as seekers (as

predicted by theory) but also as hiders (in contradiction with theory). Strikingly, we

found little to no differences in behavior across age-groups, despite the very significant

changes in cognitive capacities in our window of observation.

The lack of improvement contrasts with existing games in the developmental literature

and could be explained by a powerful and intuitive (yet erroneous) heuristic thinking. It

also sharply contrasts with the close to equilibrium behavior documented in the choices

of “expert randomizers”, such as professional sport players (Walker and Wooders, 2001;

Chiappori et al., 2002; Palacios-Huerta, 2003). It is possible that these activities at-

tract individuals with a better practical understanding of the subtleties behind the mixed

strategy Nash equilibrium. Perhaps more likely, their continual exposure to the negative

effects of suboptimal randomization with very significant payoff consequences promotes the

(conscious or unconscious) development of equilibrium strategies. Finally, it also departs

from behavioral studies reporting Nash compliance in chimpanzees playing symmetric and

asymmetric matching pennies games (Martin et al., 2014). Contrary to non-human pri-

mates, we may have lost or not developed this ability because our environment does not

select for unpredictability (Miller, 1997), making us ill-adapted to these games.

We added a cheap talk stage to the original design, and addressed the potential for

deception. Even though hiders in our game are excessively truthful and seekers have a
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slight tendency to believe them, messages do not impact outcomes significantly. Also, the

version with feedback addresses learning patterns. In general, both hiders and seekers

alternate excessively between locations, especially in the younger population, but once

again the impact on outcomes remains small.

Playing a mixed strategy requires putting our decisions in the hands of a mental

randomization device. The problem is related to the generation of random numbers,

a well-studied issue. Experiments show that sequences exhibit too few repetitions and

serially correlated responses (Rabinowitz et al., 1989; Falk and Konold, 1997), with only

modest developmental improvements (Towse and Mclachlan, 1999). These limitations

have been traced to executive functions (Jahanshahi et al., 2000). Overall, the inability

of our participants to mix strategies in the correct proportions is consistent with these

individual decision making results. It suggests that succeeding at being unpredictable

in game theoretical settings relies on an inhibitory mechanism that never fully develops.

At the same time, even our youngest participants realize the importance of trying to be

unpredictable. Indeed, no subject in the entire sample overwhelmingly favors one option

over the others.

Neuroscientific research reports that saliency detection is a key attentional process

that allows organisms to focus their limited perceptual and attentional resources on what

is pertinent (Itti and Koch, 2001; Friston, 2010). However, the process is subject to a

bias. Attention should be focused on the features relevant for the behavioral goal (e.g., to

select the correct strategy) and salient elements sometimes act as distractors, creating a

conflict that must be resolved. Biasing selection towards or away from salient stimuli is

implemented by different competing brain areas (Mevorach et al., 2006). Lack of coordi-

nation may result in a behavioral bias, which provides a unique and unifying explanation

for experimental results where salient options are favored. In our case, payoff-salience is

an added difficulty. Not only do the participants not produce responses independent of

previous responses but they are attracted by high rewards which, in the case of hiders,

lure them away from equilibrium choices.

There is still much to learn about the foundations of suboptimal behavior in mixed

strategy games. New experimental variants could help disentangle the reasons for the

observed deviations. For example, it would be useful to run both the asymmetric (as in

the current paper) and the symmetric hide-and-seek game (the traditional rock-paper-

scissors) with the same population. In the symmetric version, we expect that participants

from a young age will intuitively understand the optimality of playing each action with

probability 1/3 (thereby eliminating the bias due to payoff salience). However, we would

still expect deviations due to the difficulty to implement an unpredictable strategy as well

as the prospect of exploiting the predictability of the rival.
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Appendix A. Additional analyses

A1. Probability of success in each role

As emphasized in section 3, since Farmers should hide predominantly in the low-payoff locations
and Pirates should seek predominantly in the high-payoff ones, the former should in equilibrium be
successful more often than under uniform random behavior (which would correspond to 2/3) and
the latter less often (which would correspond to 1/3). Table 10 reports the empirical probabilities
of successful hides and successful raids. We also add the theoretical prediction for comparison.

Empirical† Theory
2-3 4-5 6-7 8-10 A

Task 1 0.62 / 0.38 0.60 / 0.40 0.60 / 0.40 0.60 / 0.40 0.57 / 0.43 0.75 / 0.25
(0.03) (0.03) (0.03) (0.03) (0.04)

Task 2 0.59 / 0.42 0.62 / 0.38 0.65 / 0.35 0.58 / 0.42 0.55 /0.45 0.75 / 0.25
(0.03) (0.02) (0.03) (0.03) (0.04)

Task 3 0.65 / 0.35 0.62 / 0.38 0.62 / 0.38 0.62 / 0.38 0.67 / 0.33 0.75 / 0.25
(0.02) (0.02) (0.02) (0.02) (0.02)

† (standard errors in parenthesis)

Table 10: Probability of success of Farmer / Pirate by task and age group

We have already emphasized that when Pirates engage in a successful raid they obtain higher
payoffs than predicted by theory because Farmers hide excessively often in the high yield locations.
According to Table 10, they also win significantly more often than predicted by theory: between
35% and 42% compared to the predicted 25% (p < 0.001). The effect is magnified in the adult
population. Overall, it is the combination of both excessively high probability of success and
excessive payoff whenever the raid is successful that accounts for the large payoff increase of Pirates
relative to the prediction of our game.

A2. Quantal Response Equilibrium

In a QRE, best response functions are stochastic. Actions with higher expected payoffs are selected
more often, but the best option is not chosen with probability one. For the sake of parsimony and
simplicity, we consider the version where players are symmetric, that is, they are all subject to the
same stochasticity. Denote by h(n,λ) and s(n,λ) the probability that a Farmer and a Pirate choose
location n in a QRE with error parameter λ. We adopt the standard Logit parametrization, so
the mixed strategy QRE (h(n,λ), s(n,λ)) solves the following system of equations:

h(n,λ) =
eλ(1−s(n,λ))n∑
n e

λ(1−s(n,λ))n
and s(n,λ) =

eλh(n,λ) n∑
n e

λh(n,λ) n
n ∈ {3, 4, 8} (3)

with the familiar limit results of uniform random choice when λ = 0 (h(n,0) = s(n,0) = 1/3) and
convergence to Nash equilibrium when λ = ∞ (h(n,∞) = h∗n and s(n,∞) = s∗n). Figure 9 depicts
with a green curve all the possible QRE predictions as a function of λ in locations n = 8 (left), n = 4
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Figure 9: Quantal Response Equilibrium.

(center) and n = 3 (right). The endpoints of the curve correspond to Nash equilibrium (h∗n, s
∗
n)

and random behavior (1/3, 1/3). The dots represent the average choices in each age group.
Note that the set of equilibria predicted by the QRE model across all possible parameters is

relatively small. The fact that the data lie close to the green curve in all three locations (yet
far away from either extreme) is suggestive evidence that the model is capturing some aspects
of the observed choices (Figure 9). Notice also that behavior would not be captured well by a
simpler model where the decision is a convex combination of Nash equilibrium and random choice
(without the fixed point element of stochastic best response inherent to QRE). Predicted choice in
such model could only lie on the line that connects the endpoints of the green curve.

To provide a measure of fit of the QRE model, we compute an estimate of the noise parameter
that best represents the aggregate choice. We implement maximum likelihood estimation (MLE)
of the system of equations that characterizes the QRE equilibrium (Eq. 3). For each age group, the
algorithm computes a likelihood (based on the trial-by-trial choices) for each possible noise param-
eter and selects the parameter obtaining the highest likelihood. Since the procedure estimates the
parameter on the choices both as Farmers and as Pirates, it is blind to potential “role” effects. The
results are reported in Table 7. To assess whether choices are similarly noisy across roles, we use
a minimum-distance estimation (MDE) technique. Formally, we compute the euclidian distance
between the aggregate distribution of play and the distribution of play predicted by QRE for each
possible noise parameter in each role. Our algorithm returns the parameter yielding the smallest
distance. We also provide MDE estimates across roles. Table 11 reports the MDE estimates for
each age group. For comparison, we also include the MLE estimates previously reported.

2-3 4-5 6-7 8-10 A

MDE Farmers 0.25 0.26 0.33 0.28 0.36
MDE Pirates 0.23 0.28 0.26 0.34 1.01
MDE Both roles 0.23 0.27 0.27 0.32 0.60

MLE Both roles 0.23 0.28 0.28 0.34 0.65

Table 11: Best noise estimate λ∗ by age group and role.
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Importantly, Table 11 highlights the congruency of MDE estimates across roles in all the
children age groups. This contrasts with the adult population, for which we need significantly
different parameters to fit the behavior in each role. Since the same set of subjects play in both
roles, the result suggests that, if anything, a model of noisy introspection captures better the
behavior of children than that of adults in our population.

A common way to evaluate QRE is to compare the likelihoods attached to Nash equilibrium
(λ = ∞) and to the best fit (λ = λ∗). This requires using our MLE estimates. Simple likelihood
ratio computations show that the data favor the best fit by a factor ranging from 64 for the
adult group to 6250 for the 2-3 age group. A complementary approach consists in testing the
hypothesis that the prediction of the best fit is consistent with the data. To do this, we ran
Hotelling’s T-squared test, the multivariate counterpart of the t-test, on the distribution of the
individual distributions of choices. We tested the hypothesis that the mean distribution was equal
to the distribution of choices corresponding to the estimated noise parameter (under both MLE
and MDE). The equality hypothesis was not rejected in groups 2-3 and A for both Farmers and
Pirates and in group 6-7 for Farmers, under either estimation method. For completeness, we also
tested the hypothesis that the mean of this distribution was equal to the choices dictated by Nash
theory. It was rejected in all roles and all age groups (all p < 0.003). Taken together, the results
indicate that QRE performs better than Nash. On the other hand, and as discussed earlier, QRE
does not account for all relevant sources of behavioral variations.

A3. Payoffs in Task 2

For Task 2, we can compute the best response of individuals to the empirical behavior of subjects
in their age group. It is the same exercise as we did in Task 1 (right columns of Table 3), except
that we enlarge it by incorporating the message game. Table 12 summarizes the information. For
Farmers, it includes the per-round payoff under best response (BR payoff), the best response hiding
and message strategy [hn,mn′ ] (BR strat.) and, for comparison, the empirical payoff obtained by
individuals in that age group (emp. payoff). For Pirates, it includes the per-round payoff under
best response and the best response seeking strategy [sn] as a function of the message observed
mn′ . Again for comparison, we also compute the payoff if the Pirate always believed the Farmer’s
message, separated by message (näıve payoff) as well as the overall value (näıve average). Finally,
we include the empirical payoff by message (emp. payoff) and overall (emp. average).

Even when we include the option of sending a message, it is still in the Farmers’ best interest
to hide in location n = 8 in all school age groups. Interestingly, the (small) gullibility of Pirates
implies that Farmers should lie about it (with the curious exception of our youngest group 2-3 who
are the only ones to be skeptical about m8). Comparing the best response payoffs in Tables 3 and
12, we notice that the message adds only a small value to Farmers in all age groups except 8-10: the
best response payoff is only increased marginally when we include this possibility. Since gullibility
is high among 8-10 participants, by misleading with message m3, payoffs in that group could be
increased by 37.7% compared to best responding without taking the message into consideration
and by 63.6% compared to the payoff empirically obtained.

Pirates, on the other hand, should optimally ignore the message and seek always in the high
yield location. Indeed, despite the significant truthfulness of Farmers (as reported in Figure 7), their
hiding behavior is so systematically biased towards h8 that Pirates should exploit this tendency at
the expense of any other information conveyed by the message. Notice also that Pirates would lose
a non-negligible fraction of earnings if they blindly followed the message of Farmers in locations
3 and 4 (näıve payoff). However, the näıve average in the school-age groups would still be 4.9%
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Farmers
2-3 4-5 6-7 8-10 A

BR payoff 4.36 4.19 4.81 5.04 3.61
BR strat. [h8,m8] [h8,m3] [h8,m3] [h8,m3] [h8,m4]

emp. payoff 3.06 3.53 3.41 3.08 2.54

Pirates
2-3 4-5 6-7 8-10 A

m3 m4 m8 m3 m4 m8 m3 m4 m8 m3 m4 m8 m3 m4 m8

BR payoff 2.74 3.12 4.86 3.90 3.69 5.19 2.39 2.80 4.88 3.18 4.04 5.10 2.91 3.45 4.55
BR strat. [s8] [s8] [s8] [s8] [s8] [s8] [s8] [s8] [s8] [s8] [s8] [s8] [s8] [s8] [s8]

näıve payoff 1.16 1.33 4.86 0.68 1.23 5.19 1.15 1.57 4.88 0.72 1.13 5.10 0.95 1.33 4.55
näıve average 2.98 2.87 2.98 2.93 2.97

emp. payoff 2.05 2.16 2.70 2.28 2.18 3.01 1.65 1.37 3.11 1.59 2.32 3.64 2.01 3.10 3.92
emp. average 2.61 2.49 2.21 2.84 3.21

Table 12: Empirical and best response payoff of Farmer and Pirate by task and age group

to 34.8% higher than their actual gains. Only adults would lose 7.4% of payoffs by following the
Farmers’ suggestion every time in every location.

A4. Feedback from outcomes

Although choices are informative, our participants may also react to outcomes. Indeed, researchers
have documented that payoff-based strategies of the type “win-stay, lose-switch” and other rein-
forcement learning algorithms are common (Erev and Roth, 1998; Steyvers et al., 2009; Bonawitz
et al., 2014). To study a basic version of this possibility, we analyze the differences in the choice
immediately after a success or a failure. Formally, we look at the variables (htn,n′(w), htn,n′(l)) for

Farmers and (stn,n′(w), stn,n′(l)) for Pirates. There are numerous ways to look at these changes. To
avoid an excessively fine partition with few observations in each case, we focus on the frequency
that choices are repeated vs. changed, aggregated across all locations. Figure 10 reports the likeli-
hood that a given individual repeats (stay) or changes (switch) location between two consecutive
rounds as a function of whether his last choice was a success (w) or a failure (l), averaged over
rounds 2 to 12 and over all individuals in that age group. The information is separated between
Farmers (left) and Pirates (right).

There are some differences in the likelihood of a location change as a function of the outcome.
Farmers in 2-3 and 8-10 switch more frequently after winning (p < 0.03) whereas Pirates in 8-10
and A switch less frequently after winning (p < 0.02). However, the effects are non-systematic and
small (up to 13.5 p.p). Overall, in support of P3(ii) we found relatively minor effects of success
and failure on the dynamics of choice. By contrast, Figure 10 (right) reinforces the findings of
section 6.1 which stated that, independent of the outcome, younger participants switch locations
as Pirates more frequently than older ones.
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Figure 10: Choice persistence after success and failure.

Appendix B. Younger children

We had the opportunity to run a shortened version of the experiment with 42 children from
Kindergarten (5-6 years old) and 34 children from 1st grade (6-7 years old) from the same school
(LILA), called K-1 age group. Given their (very) young age, their attention span is limited. Since
the game is quite simple and intuitive, we decided to follow the same experimental procedures but
run only Task 1. Table 13 presents a summary of their choices and payoffs obtained as Farmers
and Pirates. For ease of comparison we also include the data from age group 2-3, already discussed
in the paper.

Farmers Pirates
K-1 2-3 K-1 2-3

Choices h8 0.47 0.41 Choices s8 0.42 0.45
h4 0.28 0.34 s4 0.31 0.29
h3 0.25 0.25 s3 0.27 0.26

Payoffs empirical 3.57 3.15 Payoffs empirical 2.04 2.11
best response 4.68 4.41 best response 3.73 3.24
BR strat. [h8] [h8] BR strat. [s8] [s8]

PCC (h8, s8) = 0.27 (p = 0.017) [K-1]; PCC (h8, s8) = 0.05 (p = 0.72) [2-3]

Table 13: Behavior of young children (K and 1st) in Task 1.

From this table, we notice a remarkable similarity in all aspects of the game between K-1 and
2-3 (who, as we have already extensively discussed, are also similar to the older participants).
Indeed, as in the other age groups, Farmers play the opposite of the theory prediction with an
excessive choice of h8. The choice of Pirates matches qualitatively the theoretical predictions,
although s8 is, once again, too low. Since actions of K-1 are not different from 2-3, payoffs are
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also very similar. The slightly higher choice of h8 by K-1 implies more gains to distribute whereas
the slightly lower choice of s8 results in a higher share for Farmers than in 2-3. Nevertheless,
differences are marginal and best response strategies are identical to all other age groups (h8 and
s8). Finally, there is also a noticeable positive correlation in the choice of location n = 8 in both
roles so that, once again, Pirates best respond to their own behavior as Farmers but Farmers do
not best respond to their behavior as Pirates. In conclusion, there are clear systematic patterns in
the randomization choices of school age individuals and, at the same time, a very remarkable lack
of change from 5 to 16 years old.

Appendix C. Sample of instructions (grades 2 to 5)

FARMERS AND PIRATES

This game has three levels. In each level, you will be playing with a different person in the room.
The computer will decide who this person is but you will not know and it is not the point to find
out. You will be either a “Farmer” or a “Pirate”. Farmers grow magic flowers. If you are a Farmer,
you will see a screen like this (a copy of the slides is provided in Figure 11):

[ slide 1 ]

Your job is to hide the flower on one of the three islands. But, in some islands flowers grow better
than in others. If you hide the magic flower in this island, 8 baby flowers will grow. If you hide it
in that other island, 4 baby flowers will grow. And in that other, 3 baby flowers will grow. You
choose where to hide the flower. To do so, you just need to tap on the island you want the flower
to be hidden in. For example, you can hide it in this island.

[ slide 2 ]

You can change your mind as many times as you want. When you are sure of your choice, you
need to press OK to lock your choice in.

Now, if you are a Pirate, your goal is to steal the baby flowers. Your screen will say WAIT when
the farmer is hiding the flower. When the farmer has decided where to hide the flower, you will
see a screen like this.

[ slide 3 ]

You know that in this island, 8 baby flowers can grow, in this other, 4 baby flowers can grow and
in this other, 3 baby flowers can grow. Your job is to guess where the farmer hid the flower. When
you think you know, you just tap on the island you think the baby flowers are. A red circle appears
showing that island.

[ slide 4 ]

You can change your mind as many times as you want. When you are sure of your choice, you
press OK to lock it in. But how do you get points in this game? Well, if the Pirate finds the island
where the flower was hidden, he steals the baby flowers! And each baby flower is worth one point.
If the Pirate does not find it, the Farmer keeps the baby flowers and, again, each baby flower is
worth 1 point. So, for example, if the Farmer hides the flower in the island that gives 4 baby
flowers and the Pirate finds it, the Pirate gets the 4 baby flowers and the Farmer gets nothing. If
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he does not find it, then the Farmer keeps the 4 baby flowers and the Pirate gets nothing [ launch
the game ].

LEVEL 1

This is level 1 of the Farmers and Pirates game. Now, the computer will match you with a person
in the room. In this level, you will alternate roles: one time farmer, one time pirate, one time
farmer, one time pirate and you will play many times. You will not know what the other person
did each time. Each time you play, you can do the same as before or something different. It is
entirely up to you. The computer will tell you at the end of the game how many baby flowers you
got. Remember, more baby flowers, more points and more points, more toys in the shop.

Let’s start with two pretend matches. These matches do not count for real so you will not get
points here. Just use it to practice what you want to do next. If you are a farmer choose one of the
island. Once you are done, wait. If you are a pirate wait for the farmer then guess which island
has the flower [wait].

Let’s play a second time, but now with the opposite role. If you were a farmer last time, now
you are a pirate, and if you were a pirate, now you are a farmer. Again, this game is not for real
[after the practice] Are you ready to play for real now?

[ start level 1 ] [ at the end ]

Level 1 is finished. You will now see a screen like this.

[ slide 5 ]

It tells you when you were a farmer, how many times you kept the flowers [point to happy face]
and how many times you lost the flowers to the pirate [point to sad face]. It also tells you when
you were a pirate, how many times you found the flowers [point to happy face] and how many
times you did not find the flowers [point to sad face]. Finally, it also tells you all the points you
have won in this level of the game.

LEVEL 2

OK, now we will move to level 2. The game is the same as before except that, now, if you are the
Farmer, you can try to trick the Pirate. If you are a Farmer, this is what you will see on your
screen:

[ slide 6 ]

Just as before, you decide where to hide the flower by tapping on an island. But now, there is
another screen on the right. This screen is for you to tell the Pirate where you hid the flower. You
can tell the truth, or you can lie. It is up to you. When you have decided what to tell the Pirate,
you just tap on the island you want him to believe the flower is in. A blue circle appears in the
island you click.

[ slide 7 ]

Here for example, this is where I hid the flower, and this is where I said I hid the flower. You can
change your mind. When you are sure where you want to hide the flower and what you want to
tell the pirate, you press OK.
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Now if you are a Pirate, you will see a screen that says WAIT while the Farmer makes his choice.
Then you will see the same as before but also the island that the Farmer wants you to believe the
flower is in. That island is circled in blue.

[ slide 8 ]

You then need again to guess where the flower is. You may choose to believe the farmer or not.
To select an island, you tap on it and, just as before, it gets circled in red.

[ slide 9 ]

Just like before, if the Pirate finds the island with the flower, the Pirate gets the baby flowers. If
the Pirate does not find the island with the flower, the Farmer keeps the baby flowers.

[ launch the game ]

The computer will now match you with another person in the room. Again, you will alternate
roles: one time farmer, one time pirate, one time farmer, one time pirate and you will play many
times. Whenever you are the Farmer, you can try to trick the pirate or tell the truth. When you
are the Pirate, you can believe the farmer or not. Each time you play, you can do the same as
before or something different. It is entirely up to you. As before, the computer will tell you only
at the end of the game how many baby flowers you got when you were a Farmer and how many
you got when you were a Pirate. Are you ready to play?

[ start ] [ at the end ]

Level 2 is finished. Just like at the end of level 1, you will see a screen like this.

[ slide 10 ]

It tells you how many times you won as a Farmer, how many times you won as a Pirate, and your
total number of points.

LEVEL 3

Let’s move to level 3. In this level, you cannot trick the Pirate anymore but you can see what the
other person did the last time you played, and so will the other person. In level 3, you will play
as a farmer or as a pirate several times in a row. Only after several times you will switch role and
play in your new role for several times. Suppose you are the farmer and you have been playing
already 3 times as a Farmer, you will see a screen like this:

[ slide 11 ]

This screen tells you that you are currently the Farmer. On this side, it tells you in which
island you hid the flowers each of the 3 times you already played as a Farmer and whether you
won each time. If you are the pirate, you see a screen like this:

[ slide 12 ]

This screen tells you that you are currently the Pirate. On this side, it tells you in which island
you looked for the flower each time and whether you won. Do you have any questions? Let’s play
then. Remember you are not going to change roles every time you will be always the farmer or
always the pirate.

[ launch the game ] [ after half the matches ]
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Ok. Now you guys are going to switch roles. If you were a farmer you will now be a pirate and if
you were a pirate you will now be a farmer. You will play with the same person.

[ at the end, show them feedback ]

Level 3 is finished. You will see a screen like this.

[ slide 13 ]

It tells you how many baby flowers you got as a Farmer, how many you got as a Pirate and the
total number of baby flowers. The computer will now sum up all the points. You can exchange
these points for toys in the next room. Did you guys have fun today?
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Figure 11: Slides projected on screen during instructions

44


	1 Introduction
	2 Experimental design 
	3 Theory and predictions 
	4 Choices 
	4.1 Decisions to hide and seek: aggregate behavior 
	4.2 Payoffs
	4.3 Individual behavior across tasks and roles
	4.4 Determinants of behavior
	4.5 The underpinnings of suboptimal randomization

	5 Messages 
	5.1 The message game
	5.2 Truthfulness and credence
	5.3 Determinants of behavior

	6 Feedback 
	6.1 Feedback from choices 
	6.2 Regression analysis of location changes across rounds

	7 Conclusion 

