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This paper presents a model where individuals have imperfect information and
there is an opportunity cost of learning. It shows that the endogenous decision
to collect costly information before taking an action has a systematic effect
on choices. More precisely, consider two alternatives with ex ante identical
expected payoff but different variances. The model predicts that, after the learn-
ing process is stopped, a majority of individuals will select the alternative with
largest payoff-variance. The result persists when agents have multiple sources
of information. Applications to entrepreneurial investments, composition of
advisory committees, and judicial decision-making are discussed.

1. Motivation

Empirical studies show a high rate of failure in new businesses (for
data, see, e.g., Camerer and Lovallo (1999) and the references therein).
Explanations based on hit-and-run strategies or a skewed distribution of
profits with positive expected returns can rationalize the willingness of
entrepreneurs to engage in these high-risk, low-probability activities.
The literatures in psychology and behavioral finance argue, on the
contrary, that a rational cost-benefit analysis fails short to explain
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these choices. These theories claim that an “irrational” tendency to
optimism and overconfidence (loosely defined as an individual holding
an excessively positive belief in his capabilities or chances of success)
provides a more accurate account for this behavioral tendency.1 It is this
same irrational belief that pushes researchers to pursue adventurous
innovation strategies.

The present paper discusses a different and possibly complemen-
tary force for this observed tendency to engage in high-risk enterprises.
We consider individuals with imperfect knowledge about the envi-
ronment (or about themselves) who choose between alternatives with
ex ante identical expected payoffs but different risks. We argue that
if learning is feasible but sequential and costly, then the endogenous
decision to collect information generates in a population of rational
individuals a systematic and testable tendency to favor the alternatives
characterized by highest risk. Stated differently, the paper shows that,
in settings where the collection of information is dynamic and endoge-
nous, a population of rational individuals display an aggregate form of
behavior which may look like driven by irrational beliefs. Naturally, we
do not argue that imperfect knowledge and endogenous information
acquisition provide an explanation for all the choices documented
above. In that respect, the paper just adds one new element to the
discussion: risky decisions may be favored not because of irrational
beliefs and cognitive limitations but because of rational learning and an
option value argument.

To illustrate our theory, consider the following stylized example.
Two risk-neutral entrepreneurs must decide between two investment
strategies. The preferences of these entrepreneurs are identical in most
respects. In particular, for any given belief about the relative chances
of success of these investments, not only they both prefer to undertake
the same one, but they also incur the same utility loss if the other
investment is selected. There is, however, one subtle difference: the
first investment strategy is more risky for one entrepreneur whereas
the second strategy is more risky for the other. This difference in risks
may reflect, for example, the fact that entrepreneurs start with different
core activities. Pursuing a strategy that builds on existing technology
or competence is intrinsically less risky than giving up the current
technology or competence in order to pursue a radically new strategy.
Entrepreneurs initially share the same belief regarding the relative value
of both strategies but they can independently acquire extra evidence at

1. See, e.g., DeBondt and Thaler (1995) for evidence of managerial optimism and
Camerer and Lovallo (1999) for support of this hypothesis in a controlled laboratory
environment. Studies also show that optimists can drive realists out of the market
(Manove, 1999), that their presence may be socially desirable (Bernardo and Welch, 2001),
and that optimistic beliefs can maximize felicity (Brunnermeier and Parker, 2005).
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the expense of postponing the investment decision. Finally, we assume
that delay is costly: the project may become obsolete or less valuable,
and the profits postponed are discounted at a positive rate. Given the
same starting belief and the identical behavior and utility loss of both
entrepreneurs for any given belief, one could think that their choices
would be indistinguishable in a stochastic sense. However, this intuition
is incorrect: after the information acquisition process, each entrepreneur
will choose his more risky strategy with higher probability than his less
risky one, both when it is ex post revealed to be the best alternative and
when it is ex post revealed to be the worst one.

The key for the result lies in the opportunity cost of learning.
Suppose that the preliminary evidence points towards one of the invest-
ments. The opportunity cost of sampling is greatest for the entrepreneur
who derives highest payoff if that investment is chosen and turns
out to be successful, that is, for the entrepreneur with highest payoff
variance under this investment. This individual is then more tempted
than the other to stop the information acquisition process, and enjoy
the high expected payoff of his (hopefully correct) decision. Overall,
these two entrepreneurs would behave identically if the amount of
information collected were exogenously fixed. However, the asymmetry
in the total payoff of making the right decision combined with the costly
endogenous choice of learning implies that, in expectation, they will end
up choosing different actions and therefore committing different invest-
ment errors. The reader may find obvious that each entrepreneur favors
the investment that has the potential to yield highest payoff. However,
one should realize that by adopting such strategy, entrepreneurs are
also committing more often the mistakes that are most costly.

The result has two immediate consequences for the design of
advisory committees. Suppose that a firm requests the opinion of several
employees regarding the optimal investment strategy and aggregates
the information. If, for some reason (related to profit maximization or
not), the firm has a preference for a particular investment, it can increase
the probability that this investment is proposed simply by choosing
advisors whose payoff variance is greatest for that investment. Perhaps
more surprisingly, a firm concerned with maximizing the probability
of choosing the correct investment, will optimally select all advisors
of the same type. Thus, the systematic differences in choices (and
errors) should persist even when multiple sources of information are
available.

Note that, because all agents are rational in our model, the amount
of information collected is always optimal. Costly learning implies that
entrepreneurs decide without being fully informed, and therefore make
wrong choices with positive probability. Thus, the systematic differ-
ences in choices and in the type of mistakes the entrepreneurs make
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relates to their different likelihood of choosing (rightly or wrongly) one
investment or the other, and not on whether they sample optimally. In
addition, the cost of acquiring information is a delayed (and therefore
discounted) payoff and/or a probability of the project becoming obso-
lete. In either case, it is proportional to the expected payoff if sampling is
stopped and the action with highest expected payoff undertaken. This
is crucial as it implies that the project with highest payoff variance has
also the highest opportunity cost of sampling. If, instead, we assumed
a fixed sampling cost, all entrepreneurs would choose the different
investments with identical probabilities and the effect highlighted in
the paper would disappear. Last, the paper discusses other applications
such as research strategies of firms, court judgments under civil law,
and career choices.

1.1 Related Literature

The paper is related to two strands of the literature. First, to the indi-
vidual choice models developed independently by Zabojnik (2004), Van
den Steen (2004), and Santos-Pinto and Sobel (2005) and more recently
Benoı̂t and Dubra (2007). These works concentrate on a single activity
that requires ability and show that agents may perceive themselves
as “better” than their objective ranking. The argument in Zabojnik
(2004) is based on an opportunity cost of learning (as in our paper)
and an exogenous utility function convex in ability. Under appropriate
initial conditions on the discount factor, the initial ability and the
degree of convexity of the utility, only individuals with an expected
ability below a certain threshold experiment, generating the bias. In
Van den Steen (2004) and Santos-Pinto and Sobel (2005) agents evaluate
situations using different criteria: they are endowed with heterogeneous
beliefs and heterogeneous preferences about which skills are valuable,
respectively. Agents can invest in an action or in improving these skills.
The key issue is that agents evaluate the skills of others according to
their own criteria rather than the criteria of others. This, again, generates
a bias in self-assessment. Benoı̂t and Dubra (2007) demonstrate that
a prior distribution of beliefs and a private signal impose very little
statistical restrictions on a summary of the posterior beliefs held
in the population (e.g., whether their belief is above or below the
x-percentile). In particular, the authors find an upper bound on the
fraction of individuals who can rate themselves above x% which is
strictly greater than x for all x. Overall, these papers explain why a
majority of individuals may hold above average or even above median
beliefs concerning a certain positive trait. Our setting is different in that
our agents choose between several alternatives. Although we share with
these papers the result that one option will be systematically favored,
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our main goal is to explore the behavioral consequences. In particular,
we emphasize the role of the payoff-variance of the different alternatives
in determining the propensity of individuals to take different actions
and therefore commit different types of errors. We also argue the
existence of a testable relationship between delay and type of action
undertaken. Finally, we show how this systematic tendency to favor
certain choices can be exploited by third parties.

Second, because we build a model of costly learning with an
optimal stopping rule, the paper can be seen as a particular application
of optimal experimentation (see, e.g., the statistical literature on multi-
armed bandits summarized in Berry and Fristedt, 1985). There are
two features that make our model different from the main economic
applications studied in this literature. First, unlike in Bolton and Harris
(1999) or Keller and Rady (1999) for example, the agent does not decide
at each date on which arm he experiments. Instead, the decision to keep
accumulating evidence produces a signal about the relative likelihood
of each state. Second, most of this literature “highlights the fundamental
trade-off between the conflicting objectives of learning and obtaining
high current payoffs” (Aghion et al., 1991, p. 623). More precisely, by
experimenting with one arm, the agent obtains the payoff associated
with that alternative. Thus, he may choose a highly informative arm
with low expected payoff in order to learn how to behave in the future.
In our paper, experimenting has a different implicit cost: the discount
factor applied to the action eventually taken. It thus depends on the
current belief about which action is optimal and it is only borne when
the experimentation process is stopped.

The plan of the paper is the following. We first present a model
in which a decision maker has imperfect information about the state
of nature and chooses between two (risky) actions. We are particularly
interested in the behavior of agents with “seemingly the same” moti-
vations. Two agents have the same motivations if, for any given belief,
they share the same difference in expected utility between the actions
(Section 2). We show that their different incentives to acquire informa-
tion affects their behavior in systematically different ways (Section 3).
We also determine the effect on third parties when actions generate
externalities (Section 4). Last, we provide some concluding remarks
(Section 5).

2. The Model

2.1 States, Actions and Utilities

We consider the following model. There are I types of agents in the
economy (i ∈ I ) and two states of the world A and B denoted by s.
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Agents choose among a finite set of irreversible actions γ ∈ �. The ex
post utility of a type-i agent is a function ui(γ , s) of the action and the true
state. For each state, there is one action that provides the highest utility.
Naturally, this action is selected if the state is known. However, agents
initially have imperfect knowledge about the state. More precisely, they
share a common prior p that the true state is A. The expected payoff of
taking action γ is

ui (γ ) = p ui (γ , A) + (1 − p) ui (γ , B).

For expositional purposes, we will study a simpler version with
only two actions � = {a , b}. As we will develop in the discussion of our
results, this restriction is made with little loss of generality. Action a is
optimal if the state is A and action b is optimal if the state is B. Last and
foremost, the variance in payoffs is different across actions. To capture
this property, we assume that the utility representation for a type-i agent
is

ui (a , ·) =
{

xi if s = A

−xi if s = B
and ui (b, ·) =

{−yi if s = A

yi if s = B
, (1)

with xi > 0 and yi > 0. This representation allows us to restrict the
attention to the most interesting cases where it is possible to compare
the variances of the actions and to have clear-cut results. Indeed, it is
easy to see that when xi >yi, then action a has the highest variance in
payoffs.

2.2 Information

Before making a decision, each agent can learn about the likelihood of
the states. We denote by τ i,t the decision of agent i at a given date t ∈
{0, 1 , . . . , T − 1}, where T is finite but arbitrarily large. At each date, his
options are either to take the optimal action conditional on his current
information (τ i,t = γ ∈ {a , b}) or wait until the following period (τ i,t =
w). If the agent undertakes an (irreversible) action, then payoffs are
realized and the game ends. Waiting has costs and benefits. On the one
hand, the delay implied by the decision to wait one more period before
acting is costly. We denote by δ (<1) the discount factor. Alternatively,
1 − δ can be interpreted as the probability that all options vanish, in
which case the agent obtains no payoff. On the other hand, the agent
obtains between dates t and t + 1 one signal σ ∈ {α, β} imperfectly
correlated with the true state. Information improves the quality of the
decision made by the agent. As long as the agent waits, he keeps the
option of undertaking action a or b in a future period, except at date
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T where waiting is not possible anymore, so the agent’s options are
reduced to τ i,T ∈ {a , b}.2 The relation between signal and state is the
following:

Pr[ α | A] = Pr[ β | B ] = θ and Pr[ α | B ] = Pr[ β | A] = 1 − θ ,

where θ ∈ (1/2, 1) captures the accuracy of information: as θ increases,
the informational content of a signal σ increases (when θ → 1/2 signals
are uninformative, and when θ → 1 one signal perfectly informs the
agent about the true state).3

Suppose that a number nα of signals α and a number nβ of signals β

are revealed during the nα + nβ periods in which the agent waits. Using
standard statistical techniques, it is possible to compute the agent’s
posterior belief about the state

Pr(A| nα , nβ ) = Pr(nα , nβ | A)Pr(A)
Pr(nα , nβ | A)Pr(A) + Pr(nα , nβ | B)Pr(B)

= θnα−nβ · p
θnα−nβ · p + (1 − θ )nα−nβ · (1 − p)

.

It is interesting to notice that the posterior depends exclusively on
the difference between the number of signals α and the number of
signals β. So, roughly speaking, two different signals “cancel each other
out” for the purpose of computing the expected belief. The relevant
variable which will be used from now on is n ≡ nα − nβ ∈ Z. We define
the posterior probability μ(n) ≡ Pr(A| na , nb). Rearranging terms, we
have4

μ(n) = 1

1 +
(

1 − θ

θ

)n 1 − p
p

.

Last, when solving the model, we will treat n as a real number (instead
of an integer as we should in order to be rigorous). This mathematical
abuse is made for technical convenience.

2. A finite horizon game ensures the existence of a unique stopping rule at each
period that can be computed by backward induction. By setting T arbitrarily large we can
determine the limiting properties of this optimal stopping rule.

3. It is equivalent to increase the correlation between signal and state or to increase
the number of signals between two dates; both can be captured with the parameter θ .

4. Given θ ∈ (1/2, 1), the following properties of μ(n) are immediate: (i)
limn→−∞ μ(n) = 0, (ii) limn→+∞ μ(n) = 1, and (iii) μ(n + 1) > μ(n) ∀n.
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2.3 Types

Different types of agents have different preferences, which translate
into different cardinal representations of their utility. From a general
perspective, there are two cases. In some situations, agents with the
same belief simply disagree on the optimal action. They will end up
making different choices both when they learn and when they choose
between actions. In some other situations, agents with the same belief
agree on the action to take. One objective of this paper is to show that
they still might end up making different learning decisions and taking
different actions subsequently.

To focus on these second type of situations (see the next section
for some examples), we assume that for any given belief, all types of
agents have the same difference in expected utility between every pair
of actions. This means not only that they have the same preferred action
when confronted to the same evidence, but also that they have the same
willingness to pay to make the decision. We will say that these different
types of agents “FOR IDENTICAL BELIEFS ARE IDENTICAL IN BEHAVIOR
AND UTILITY DIFFERENCE” (IBIBUD). The property is summarized as
follows.

Definition: Agents are IBIBUD if and only if

ui (γ ) − ui (γ ′) = ui ′(γ ) − ui ′(γ ′) ∀ i, i ′ ∈ I , γ , γ ′ ∈ �, p

which, in particular, implies that arg max
γ

ui (γ ) ≡ arg max
γ

ui ′ (γ ) for all i ,

i ′∈I , p.

Given our simplified two-action model, it is sufficient to restrict
to two types of agents: action a has the highest variance in payoffs for
type-1 agents and action b has the highest variance in payoffs for type-2
agents. Let x1 = h and y1 = l with h > l, then, it is sufficient to restrict
to the case where x2 = l and y2 = h. The IBIBUD property translates into

ui (a ) − ui (b) = (h + l)(2p − 1) ∀ i ⇒ γi = a if p > 1/2 and

γi = b if p < 1/2 ∀ i.

Figure 1 provides a graphical representation of these utilities.5

5. Because some payoffs are negative, an individual with negative expected utility
would prefer to delay the outcome. This counter-intuitive possibility does not arise in
our model because under the optimal action (a if p > 1/2 and b if p < 1/2), the expected
payoff is always nonnegative. In any case, all the results and proofs immediately extend
if we add a constant k (>h) to all utilities, making every payoff positive (that is, u1(a , A) =
k + h, u1(a , B) = k − h, u1(b, B) = k + l, u1(b, A) = k − l and similarly for u2(·)).
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FIGURE 1. UTILITY REPRESENTATIONS FOR TYPE-1 AND TYPE-2
AGENTS

2.4 Examples

In our theory, an individual must eventually take an irreversible
decision that is ex post optimal only in one (ex ante unknown) state
of the world. Information can be obtained before making a choice at a
cost. We briefly review a series of situations in which those ingredients
are present.

ENTREPRENEURIAL INVESTMENTS UNDER UNCERTAINTY: Our lead-
ing example is about choice between different risky investments. A
firm must decide which investment strategy to follow, a or b: the devel-
opment of a product based on current know-how or one that radically
departs from it; an R&D strategy that builds on existing technology or
one that requires the development of a new technology; an investment
that consolidates the existing costumer base or one that expands to a
different population; a product that exploits complementarities with
the existing portfolio or one that opens a new niche for the firm. The ex
ante unknown state of the economy, market conditions, and consumer
preferences, A or B, determine which investment will be relatively more
successful. Finally, a choice that involves diversification is intrinsically
more risky for a firm than one that builds on core competence (existing
vs. new knowledge, technology, customers or product). Because firms
in the same market have different backgrounds, what is considered
high risk for one firm may be low risk for another and vice versa; the
difference across types (1 or 2) captures this heterogeneity.

COURT JUDGEMENTS UNDER CIVIL LAW: A judge must choose
whether to release (action a) or convict (action b) an offender who is
innocent (state A) with probability p and guilty (state B) with probability
1 − p. The judge can acquire information about the culpability of
the accused at the cost of delaying the sentence. Letting the prisoner
free is the riskiest choice for a type-1 judge (payoff u1(a , ·) ∈ {−h, h})
whereas convicting him is the riskiest choice for a type-2 judge (payoff
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u2(b, ·) ∈ {−h, h}). However, for any belief p, the differential in utility
between convicting and releasing the offender is the same for both
judges (IBIBUD property). An alternative interpretation is that there is
only one judge and i represents the type of offense (robbery, murder,
etc.). For these different offenses, conviction and acquittal involve
different objective risks.

CAREER CHOICES UNDER IMPERFECT SELF-KNOWLEDGE: An adoles-
cent chooses whether to pursue a career in sports (a) or to continue his
intellectual education (b). Success in sports depends largely on “talent”
(physical strength, coordination, performance under pressure). States
A and B denote respectively a person with high talent and low talent
for sport relative to his talent for intellectual activities. Training and
repeated exposure to the activity provides information at a cost. Indeed,
each year of nonexclusive attention decreases the long-run expected
return in either domain. Last, earnings have a higher variance in sports
(h or − h) than in intellectual endeavors (l or − l). Thus, there is only
one relevant type in this application.

This example can be relabeled as an individual who decides
whether to become an entrepreneur and open his own business (the
high risk activity) or accept a job as an employee in a firm (low
risk activity). Entrepreneurial talent is most valuable in new business
ventures whereas discipline and team spirit is most important when
working in a firm.

3. Information Acquisition and Optimal

Decision-Making

A first goal of our study is to determine how a type-i agent acquires
information before making a decision (Section 3.1). Another objective is
to compare the behavior of individuals with apparently similar motiva-
tions, that is, individuals who satisfy the IBIBUD property (Section 3.2).
We want to determine whether they exhibit different patterns of infor-
mation acquisition and, if so, why. We also want to analyze how these
different sampling strategies affect posterior beliefs (which measure
the ex post confidence in the state) and actions. Then, we want to find
out which type of mistakes are eventually made: how often action a is
undertaken under state B, and action b under state A. The next objective
is to determine whether the preferences of agents can be inferred from
choices, the only observable variable (Section 3.3). We also study what
happens when we consider a different cost of information acquisition
(Section 3.4). Finally, we discuss the importance of the main ingredients
of the model (Section 3.5).
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3.1 Option Value of Waiting and Optimal

Stopping Rule

Given the information revelation structure presented in Section 2.2,
agents face a trade-off between delay and information. This trade-off
has been analyzed in a related setting in the literature on investment
under uncertainty (see, e.g., Dixit and Pindyck, 1994, for a summary).
In these models however, time is continuous and there is only one
risky action to take. Our model can thus be seen as an extension of this
literature to the case where two risky options are available. In this new
setting and conditional on making a choice now, the opportunity cost
of taking one action is not fixed anymore. This, in turn, also affects the
option value of waiting.

In order to find the optimal stopping rule, we first determine the
value function Vt

i that a type-i agent maximizes at date t. It can be
written as

Vt
i (n)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

xi (2μ(n)−1), δ
[
ν(n)Vt+1

i (n + 1) + (1−ν(n))Vt+1
i (n−1)

]}
if μ(n)� 1

2

max
{

yi (1−2μ(n)), δ
[
ν(n)Vt+1

i (n + 1) + (1−ν(n))Vt+1
i (n−1)

]}
if μ(n)<

1
2

(2)

where ν(n) = μ(n)θ + (1 − μ(n))(1 − θ ). In words, at date t and given a
difference of signals n that implies a posterior μ(n) > 1/2, type-i agent
chooses between taking action a with expected payoff xiμ − xi(1 − μ)
or waiting. In the latter case, signal α (respectively β) is received with
probability ν (respectively 1 − ν) and the value function in the following
period t + 1 becomes Vt+1

i (n + 1) (respectively Vt+1
i (n − 1)), discounted

at the rate δ. For μ(n) < 1/2, the argument is the same, except that the
optimal action if the agent does not wait is b with payoff − yiμ + yi(1 −
μ). Given (2), we can determine the optimal strategy for each type. This
technical result is key for the subsequent analysis.
Lemma 1: For all δ < 1, there exist (n∗

i,t, n∗∗
i,t) at each date t s.t.

τi,t = b if n � n∗
i,t, τi,t = a if n � n∗∗

i,t and τi,t = w if n ∈ (n∗
i,t, n∗∗

i,t).

Besides, we have μ(n∗
i,t) < 1/2 < μ(n∗∗

i,t).
Proof . See Appendix Section A.1.

The idea is simple. Agents trade-off the costs of delaying their
choice between actions a and b with the benefits of acquiring more
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accurate information. When μ(n) > 1/2, waiting becomes more costly
as n increases, because delaying the action one extra period reduces the
expected payoff by an amount proportional to 2μ(n) − 1. Conversely,
when μ(n) < 1/2, waiting becomes more costly as n decreases, because
delaying the action reduces the expected payoff by an amount propor-
tional to 1 − 2μ(n). In other words, at each date t, there are two cutoffs
μ(n∗∗

i,t) > 1/2 and μ(n∗
i,t) < 1/2 for a type-i agent. When μ � μ(n∗∗

i,t), the
individual is “reasonably confident” that the true state is A, and when
μ � μ(n∗

i,t), he is “reasonably confident” that the true state is B. In either
case, the marginal gain of improving the information about the true
state is offset by the marginal cost of a reduction in the expected payoff
due to the delay it implies. As a result, he strictly prefers to stop learning
and take his optimal action. For intermediate beliefs, that is when μ(n) ∈
(μ(n∗

i,t), μ(n∗∗
i,t)), a type-i agent prefers to keep accumulating evidence.

3.2 Different Decisions by Agents

with the Same Motivations

In this section, we want to compare the behavior of IBIBUD agents. We
consider the two types we already introduced, that is, (x1 = h, y1 = l)
and (x2 = l, y2 = h), with h > l. Action a has the highest variance in
payoffs for type-1 agents, whereas action b has the highest variance in
payoffs for type-2 agents. Our next result is the following.

Proposition 1: For all δ < 1 and for all t, type-1 agents require less
evidence in favor of A to take action a and more evidence in favor of B to take
action b than type-2 agents. Formally, μ(n∗

1,t) < μ(n∗
2,t) < 1/2 < μ(n∗∗

1,t) <

μ(n∗∗
2,t).

Proof . See Appendix Section A.1.

First of all, note that by the symmetry of types 1 and 2, μ(n∗∗
1,t) =

1 − μ(n∗
2,t) and μ(n∗

1,t) = 1 − μ(n∗∗
2,t). It immediately implies that

μ
(
n∗∗

1,t

) − 1/2 < 1/2 − μ
(
n∗

1,t

)
and μ

(
n∗∗

2,t

) − 1/2 > 1/2 − μ
(
n∗

2,t

)
.

These inequalities state that the confidence of a type-1 agent on the
true state being A when he chooses to take action a is smaller than his
confidence on the true state being B when he chooses to take action b. By
symmetry, the opposite is true for a type-2 agent. Comparing the two
agents, it means that a type-1 agent will need fewer evidence in favor of
A in order to decide to stop collecting news and take action a and more
evidence in favor of B in order to stop collecting news and take action
b than a type-2 agent. The intuition for this result is simply that, given
the delay associated with the accumulation of evidence, the marginal
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FIGURE 2. STOPPING RULES FOR TYPE-1 AND TYPE-2 AGENTS

cost of learning is proportional to the agent’s expected payoff of taking
an action. Formally, for a type-1 individual, it is proportional to h(1 −
δ) when μ > 1/2 (action a) and to l(1 − δ) when μ < 1/2 (action b). As
a result and other things being equal, it is relatively less interesting to
keep experimenting when the action currently optimal is a rather than
b. The argument for a type-2 agent is symmetric. The shape of these
cutoffs is graphically represented in Figure 2.

When T → +∞, then n∗
i,t →n∗

i and n∗∗
i,t →n∗∗

i for all t. Denote
by Pr(τi = γi | s) the probability that a type-i individual eventually
undertakes action γ i (∈ {a , b}) when the true state is s (∈{A, B}). Also, let
μ∗∗

i ≡ μ(n∗∗
i ) and μ∗

i ≡ μ(n∗
i ). Then, the posterior beliefs at the stopping

rules are μ∗
1 and μ∗∗

1 for type-1 agents and μ∗
2 and μ∗∗

2 for type-2 agents.
Given agents are symmetric, we have μ∗∗

2 = 1 − μ∗
1 and μ∗

2 = 1 − μ∗∗
1 .

To simplify notations, let μ∗∗ ≡ μ∗∗
1 and μ∗ ≡ μ∗

1 (then μ∗∗
2 = 1 − μ∗

and μ∗
2 = 1 − μ∗∗). Suppose that type-1 and type-2 agents start with

the same prior belief p ∈ (1 − μ∗∗, μ∗∗). Each agent chooses the amount
of information he collects before undertaking an action and the signals
obtained by the agents are independent. Their optimal stopping rule is
given by Lemma 1. We can compare the relative probabilities that each
agent undertakes action a and action b.

Proposition 2: For all p ∈ (1 − μ∗∗, μ∗∗), δ < 1, h > l > 0 and when
T → ∞ , type-1 agents take action a wrongly more often than type-2 agents.
Similarly, type-1 agents take action b wrongly less often than type-2 agents.
Moreover, as the difference in payoffs between actions increases, the difference
in behavior between types 1 and 2 increases.

Proof . The first part of Proposition 2 is a direct consequence of
μ(n∗∗

2 ) > μ(n∗∗
1 ) and μ(n∗

2) > μ(n∗
1). These inequalities imply that

Pr(τ1 = a | B) > Pr(τ2 = a | B) and Pr(τ1 = b | A) < Pr(τ2 = b | A);
the second part results from the fact that, also by Lemma
1, ∂n∗

1
∂h < 0, ∂n∗∗

1
∂h < 0, ∂n∗

1
∂l > 0, ∂n∗∗

1
∂l > 0 and by symmetry ∂n∗

2
∂h >

0, ∂n∗∗
2

∂h > 0, ∂n∗
2

∂l < 0, ∂n∗∗
2

∂l < 0. Then ∂Pr(τ1 = a | s)
∂h > 0 >

∂Pr(τ2 = a | s)
∂h and

∂Pr(τ1 = a | s)
∂l < 0 <

∂Pr(γ2 = a | s)
∂l for all s. These comparative statics fulfill
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the purpose of our analysis. However, for the reader interested,
the analytical expressions of the probabilities Pr(τi | s) are derived
in Brocas and Carrillo (2007, lemma 1) for an initial prior p and
exogenous stopping posteriors μ∗ and μ∗∗.6 These are given by:
Pr(τ1 = a | A) = p − μ∗

μ∗∗ −μ∗
μ∗∗

p , Pr(τ1 = a | B) = p −μ∗
μ∗∗ − μ∗

1−μ∗∗
1 − p , Pr(τ2 = a | A) =

p − (1 − μ∗∗)
μ∗∗ −μ∗

1 − μ∗
p , Pr(τ2 = a | B) = p − (1−μ∗∗)

μ∗∗ − μ∗
μ∗

1 − p . �

Proposition 2 shows that, even if type-1 and type-2 agents are
IBIBUD—and therefore have intrinsically the same motivations—they
will make systematically different choices, at least in a stochastic sense.
As shown in Lemma 1, a type-1 agent is relatively more likely to
stop collecting news when the preliminary evidence points toward
the optimality of action a than when it points toward the optimality
of action b (i.e., when the first few signals are mainly α rather than
β). Stated differently, the evidence in favor of A needed to induce a
type-1 agent to take action a is smaller than the evidence in favor of B
needed to induce him to take action b. The opposite is true for a type-2
agent. As a result, in equilibrium, a type-1 agent is more likely to take
action a by mistake (i.e., when the true state is B) and less likely to take
action b by mistake (i.e., when the true state is A) than a type-2 agent.
Note that the endogenous choice to acquire information is crucial for
this result: by definition of IBIBUD, the two types of agents would take
action a with the same expected probability if the number of signals they
receive were externally or exogenously imposed. Also, as the difference
in the variance of payoffs (h − l) increases, the likelihood that the two
agents behave differently also increases: type-1 takes more often action
a by mistake and less often action b by mistake whereas the opposite
is true for type-2. Last, the fact that type-1 agents are less likely to
take action b when the state is A automatically implies that they are
more likely to take action a when the state is A. Thus, Proposition 2
can be best stated as “type-1 agents are more likely to take action a
and less likely to take action b, both rightly and wrongly, than type-2
agents.”

We now provide a simple numerical example to give an idea of
the propensity of agents to make different types of mistakes. Consider
the extreme situation in which h > 0 and l → 0.7 From the proof of

6. The paper uses related techniques to study a different issue. It analyzes a princi-
pal/agent model with incomplete contracting and determines the rents obtained by the
former due to his ability to control the flow of public information.

7. This means that n
∗
1 → − ∞, n∗∗

2 → +∞ and therefore μ
∗ → 0. The assumption is

by no means necessary. However, it allows us to make clear-cut comparative statics with
only two parameters (p and μ

∗ ∗
).
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FIGURE 3. FREQUENCY OF MISTAKES BY TYPE-1 AND TYPE-2
AGENTS

Proposition 2, the probability that a type-i agent makes the wrong
decision is

Pr(τ1 = a | B) = p
1 − p

× 1 − μ∗∗

μ∗∗ and Pr(τ1 = b | A) → 0

Pr(τ2 = a | B) → 0 and Pr(τ2 = b | A) = 1 − p
p

× 1 − μ∗∗

μ∗∗ .

A type-1 agent will never take action b mistakenly, and a type-2 agent
will never take action a mistakenly. Simple comparative statics about
the likelihood of taking the wrong action given a prior probability p and
a stopping posterior μ∗∗ are illustrated in Figure 3.

Last, note that μ∗∗ is increasing in δ, and limδ→1 μ∗∗ = 1. As
individuals become more patient, they acquire more information and
make fewer mistakes. If they are infinitely patient, the cost of waiting
vanishes. It then becomes optimal for both types to be (almost) perfectly
informed before choosing any action, and there are (almost) no mistakes
in equilibrium.

3.3 Revealed Preferences

Suppose only choices are observable. Do choices convey any informa-
tion about the preferences of agents? In principle, agents might end up
making decisions for many different reasons and it might be difficult to
identify a clear relationship between preferences and choices. Agents
who often take action a might simply prefer that action. But, as our
theory suggests, a tendency to favor a certain action can also arise in
the absence of such strict preference. Overall, behavior is not a good
indicator of preferences and a systematic tendency to behave in a certain
way does not necessarily result from a bias in perceptions or preferences.
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Our analysis suggests however that observed choices can be
sometimes informative about the preferences of decision-makers. To
be more precise, suppose that the individual starts with a prior belief
p = 1/2 and his preferences are known up to the true type. We have the
following result.

Proposition 3: Agents’ types can be partly inferred from (i) the decisions
they reach; (ii) the delay in making decisions; and (iii) the frequency of their
mistakes.

First, we have shown in the previous section that the alternative
that can potentially yield highest payoff (that is, the one with highest
payoff-variance) will be adopted more often. In that case, it is possible
to infer the preferences by observing the decisions of agents. Type-1
agents will take action a more often than type-2 agents. Conversely,
type-2 agents will take action b more often than type-1 agents.

Second, given the optimal learning strategy and compared to
type-2 agents, type-1 agents will reach more quickly the stopping rule
commanding to take action a than the stopping rule commanding to take
action b. In other words, the alternative that can potentially yield highest
payoff will be adopted not only more often but also more rapidly. This
positive relation between delay and type of decision can, in principle,
be tested empirically.

Finally, if the state is observable ex post, it is possible to determine
whether a mistake was made or not. The frequency of the mistakes can
then be used to infer the type of the agent. In our case, a type-1 agent
is more often wrong than a type-2 agent when he takes action a and
less often wrong when he takes action b. Again, this prediction can be
empirically tested.

3.4 Robustness

A crucial ingredient for the results presented so far is our specific way of
modelling the cost of information acquisition. Because, delayed payoffs
are discounted at a positive rate, the opportunity cost of waiting is
greater the bigger the expected payoff of choosing an action. So, for
example, starting from p = 1/2 it is more costly to wait after one signal
in favor of the high-variance alternative than after one signal in favor of
the low variance alternative. Formally, the opportunity cost of stopping
the sampling process is (1 − δ) h(2μ(1) − 1) in the former case and
(1 − δ) l(1 − 2μ(−1)) ≡ (1 − δ) l(2μ(1) − 1) in the latter. Naturally,
identical results would be obtained if, instead of a discount factor, we
assumed that the possibility of acting vanishes between two dates with
probability q = 1 − δ.
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By contrast, the results would not hold if the only cost of sampling
was a fixed per unit fee (and no delay). Formally, the value function of
a type-i agent at date t, Ṽt

i , would be

Ṽt
i (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

xi (2μ(n)−1), ν(n)Ṽt+1
i (n + 1) + (1−ν(n))Ṽt+1

i (n−1)−c
}

if μ(n)� 1
2

max
{

yi (1−2μ(n)), ν(n)Ṽt+1
i (n + 1) + (1−ν(n))Ṽt+1

i (n−1)−c
}

if μ(n)<
1
2

(3)

with c (>0) denoting the cost per unit of sampling. Indeed, in Appendix
Section A.2, we show that under this alternative specification, the
willingness to experiment is identical in the low and high variance
alternatives, so it is also identical for a type-1 and a type-2 agent.
The reason is simple. Sampling has a benefit and a cost. The benefit is
the possibility of finding enough information in support of the currently
unfavored alternative that would lead to a switch of action weighted
by the incremental expected gain of implementing this action reversal.
Because of the IBIBUD property, this incremental gain is identical for
both types of agents. The cost is simply the amount to pay for extra
information. With a fixed per unit fee c, this cost is also identical for
both types of agents. If the cost and the benefit are the same, the optimal
stopping rule is also the same.8

Because a fixed cost affects the total amount of sampling but not
the relative propensity to experiment on each alternative, all our results
survive when we combine the fixed cost described in this section with
the opportunity cost developed in the main body of the paper. For most
applications, the cost of experimentation is likely to be a combination
of delay, probability of not being able to act in the future and per unit
fee. The relative importance of each of them will depend on the specific
case. For example, in the investment application acquiring information
has two major costs: the project may become obsolete or may be
undertaken by a rival entrepreneur, and the profits are delayed and
therefore discounted. By contrast, for judicial decision-making the most
important cost is the time, effort and money spent in the collection of
each piece of evidence. Finally, the cost of delaying the choice between

8. With asymmetric payoffs, one of the alternatives would have an exogenous
advantage. In particular, the belief where the individual is indifferent between actions
a and b would be p̂ �= 1/2. The stopping rule with a cost per unit of sampling would still
be symmetric, but only with respect to the belief p̂.
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an intellectual and a sport career is a decrease in the probability of
success in either domain.

3.5 Discussion

To conclude this section, we briefly discuss the importance of some
other ingredients of the model and some possible interpretations of the
results.

It should be clear by now that agents in our model are not
fooled, deceived or misled. Contrary to the behavioral literature on
optimism or overconfidence (see the references in the introduction),
our agents have no cognitive limitations that would lead to systematic
biases in their beliefs. Instead, they are rational; they accumulate and
interpret signals in a Bayesian way, and choose optimally given their
information. Differences in choices between the different types of agents
(and therefore in outcomes and in the type of mistakes incurred) are
solely due to differences in their marginal incentives to learn about
the state of the economy. In other words, in our paper the tendency
to favor risky alternatives in entrepreneurial endeavors after a small
amount of evidence is a profit-maximizing strategy: the high risk and
low chances of success are recognized, but the opportunity cost of
accumulating more evidence is too important. Technically, the point
is very simple. The endogenous decision to acquire information does
not affect the first-order moment of beliefs. That is, the average belief
in the population always coincides with the true average. However,
it may influence the higher-order moments. In particular, it can af-
fect the skewness in the distribution of beliefs. Given a limited set
of actions, two populations whose distribution of beliefs have the
same average but different skewness will exhibit different aggregate
behaviors.9

The model relies on irreversibility of actions or no learning after the
decision is made. Irreversibility is quite natural in the judicial example,
but either assumption can be too extreme in investment choices for
example. Nevertheless, one should realize that partial irreversibility is
enough to generate a short-run tendency to favor the riskiest alterna-
tive. Moreover, if the environment changes stochastically, information
becomes obsolete over time, preventing the agent from learning the
state with certainty. In that case, the willingness to favor risky choices
will persist also in the long run, even under partial reversibility.

9. This point was first made by Carrillo and Mariotti (2000) in a model with hyperbolic
discounting agents and a costless learning technology. It has been recently exploited by
Benoı̂t and Dubra (2007) in a different context.
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Geometrically, the utility of a type-2 agent is just a rotation of the
utility of a type-1 agent (see Figure 1). It is then easy to see that the
effect of payoff-variance in the delay and likelihood of taking certain
alternatives will hold if, keeping IBIBUD, we increase the action space.
From a theoretical viewpoint, it would be interesting to study a more
general version of this two armed bandit problem, as it could provide
novel insights about the relationship between the value of information
and the “curvature” of the utility function.

4. Micromotives and Macroconsequences

We have argued in the previous sections that agents with the same
motivations can end up making different choices, resulting in different
types of mistakes. In many contexts, the decision might affect other
agents in the economy, and those agents might be more or less sensitive
to a given type of mistake. In the next subsections, we assess the mistakes
from the perspective of third parties when externalities are present.

4.1 Preferences over ibibud Agents

Note that, in our model, agents select a stopping rule that increases
the probability of taking the action with highest payoff. The other
side of the coin is that, with this strategy, agents are also increasing
the probability of making the mistakes that are most costly. Because
the types of mistakes incurred are systematically different, the parties
involved will invariably have preferences over which type of agent they
prefer to face.

To analyze this point in more detail, let us consider a third party
with preferences summarized by the utility function v(γ , s). Also, let
Pr (A) ≡ p ∈ (μ∗

i , μ∗∗
i ) and assume that the third party does not pay the

cost of learning (δ = 1). Given the stopping rule used by a type-i agent,
the expected utility of the third party is

v̂
(
μ∗

i , μ∗∗
i

) = p
[
Pr(τ1 = a | A) v(a , A) + Pr(τ1 = b | A) v(b, A)

]
+ (1 − p)

[
Pr(τ1 = a | B) v(a , B) + Pr(τ1 = b | B) v(b, B)

]
which simplifies as

v̂
(
μ∗

i , μ∗∗
i

) = p − μ∗
i

μ∗∗
i − μ∗

i

[
μ∗∗

i v(a , A) + (1 − μ∗∗
i )v(a , B)

]

+ μ∗∗
i − p

μ∗∗
i − μ∗

i

[
μ∗

i v(b, A) + (
1 − μ∗

i )v(b, B
)]

.
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A simple inspection of this function yields the following result.

Proposition 4: Different types of agents have different effects on the
welfare of third parties. In particular, (i) an IBIBUD third party with preferences
of the form v(·, ·) = u1(·, ·) or v(·, ·) = u2(·, ·) strictly prefers type-1 agents when
p < 1/2 and type-2 agents when p � 1/2; and (ii) third parties with a strict
preference for an action can appoint a priori unbiased agents to manipulate
collective decision-making.

Proof . We have ∂v
∂μ∗

i
∝ μ∗∗

i [v(b, A) − v(a , A)] + (1 − μ∗∗
i )[v(b, B) − v(a ,

B)]. Similarly, ∂v
∂μ∗∗

i
∝ μ∗

i [v(b, A) − v(a , A)] + (1 − μ∗
i )[v(b, B) − v(a , B)].

Then, if v(b, A) < v(a , A) and v(b, B) < v(a , B), both derivatives are
negative. Now let v(a , A) = x, v(a , B) = −x, v(b, A) = −y and v(b, B) =
y, then ∂v

∂μ∗
i

∝ (x + y)(1 − 2μ∗∗
i ) < 0 and ∂v

∂μ∗∗
i

∝ (x + y)(1 − 2μ∗
i ) > 0.

Also,

v̂
(
μ∗

1, μ∗∗
1

) ≡ V̂1 = x(2μ∗∗ − 1)
p − μ∗

μ∗∗ − μ∗ + y(1 − 2μ∗)
μ∗∗ − p
μ∗∗ − μ∗

v̂
(
μ∗

2, μ∗∗
2

) ≡ V̂2 = x(1 − 2μ∗)
p − 1 + μ∗∗

μ∗∗ − μ∗ + y(2μ∗∗ − 1)
1 − μ∗ − p
μ∗∗ − μ∗

and V̂1 − V̂2 ∝ (1 − 2p)[1 − μ∗∗ − μ∗]. For all p ∈ (1 − μ∗∗, μ∗∗), we
have 1 − μ∗∗ − μ∗ > 0 and therefore V̂1 − V̂2 ≷ 0 if p ≶ 1/2. �

The result is intuitive. Given that IBIBUD agents end up making
different choices and therefore commit different types of mistakes, they
affect third parties differently. Because they do not have to pay the cost
of learning, all third parties who care about taking the correct action
(a under A and b under B) want to learn the true state and therefore
prefer an agent who acquires as much information as possible. If third
parties are also affected by the delay, an interior stopping rule becomes
optimal also from their perspective. However, even the extreme case
where maximum information is optimal has an interesting property:
all third parties who care about taking the correct action and would
take the same decision as both types of agents for a given prior, have
strict preferences over types. If the initial belief suggests to take action
a (p > 1/2), they all want to delegate the decision to a type-2 agent. The
reason is simply that they anticipate that a type-1 agent will stop with
little evidence towards state A and therefore take action a “too often.”
The best chance to discover action a is incorrect is to appoint a type-2
agent who will continue learning until there is substantial evidence in
favor of A. The same argument applies when the initial belief suggests
b is optimal. The implications for the investment example described in
Section 2.4 are simple but interesting. For instance, consider a manager
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whose preferences are represented by the utility function uk(γ , s)
with k ∈ {1, 2}. Suppose that he must delegate both the information
acquisition and the investment decision to one of his employees whose
preferences are represented by ui(γ , s). If the manager must compensate
the employee for the sampling process, then it is trivially optimal to
select an individual with identical interests, i = k. This conclusion
does not necessarily hold when the manager does not compensate the
employee for the information cost nor suffers if there is a delay. In that
case, the manager tries to maximize the information obtained before
acting. This is achieved by selecting an employee who is reluctant to
stop in the state favored by the prior. Summing up, a type-1 manager
who initially believes that state A is more likely than B finds it optimal
to appoint an employee who stops with little evidence toward A (that is,
a type-1 agent) if the manager pays for the sampling cost. However, if
the manager does not pay for it, then he prefers to appoint an individual
who samples relatively more given the prior belief and therefore takes
more often the optimal action (that is, a type-2 agent).

The second part of the proposition states that decisions can be
manipulated if third parties can choose the agents’ type. It is a direct
consequence of Propositions 1 and 2. If a third party wants action a to be
taken independently of the state, it will optimally delegate the decision
to an agent who is most likely to take action a, that is, a type-1 agent. The
implications are, again, immediate. A manager with a vested interest
in one particular action can impose his preferences with relatively high
probability and, at the same time, not be considered partisan: he simply
needs to delegate the decision to an employee whose payoff variance
is very high under the action preferred by the manager and very low
under the other action.

4.2 Committees

Another natural question is whether aggregating the information that
IBIBUD individuals can collect would alleviate mistakes. For instance,
suppose that a welfare maximizing principal can ask several type-1 and
type-2 agents their opinion about which action a or b should be taken.
For simplicity, assume that agents care only about providing the correct
appraisal (whether their suggestion is followed by the principal or not)
and that their utility is captured with the functions ui(γ , s) described in
Section 2. This behavior is rational if, for example, appraisal and state
are ex post revealed and agents have career concerns: their payoff is
then a function of the quality of their suggestion, and not a function
of the final action undertaken. In this setting, each agent’s optimal rule
for the acquisition of information coincides with the rule described in
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Lemma 1, so increasing the number of agents can only decrease the
probability of an incorrect decision.10 We assume that the number of
agents is fixed but the principal can choose the proportion of type-1 and
type-2 agents. Given that the two types of agents commit systematically
different errors, we want to determine whether it is optimal to select all
agents of the same type or to have appraisals from agents of both types.
In other words, we are interested in studying the optimal composition
of an advisory committee, and we ask the following question: is it better
to be surrounded by individuals who tend to favor the same or opposite
actions?

To address this issue, we consider the simplest version of our
model. We denote by γ

j
i the recommendation made by the j th type-i

agent. We suppose that l → 0, so that Pr(γ j
1 = b | A) = 0 and Pr(γ j

2 =
a | B) = 0 for all j. The total number of agents is fixed and equal to n.
The principal chooses x, the number of type-1 agents, n − x being the
number of type-2 agents. Last, in order to avoid any exogenous reason
to prefer one type of agent over another, we assume that the principal’s
sole concern is to minimize the probability of a mistake, that is, v(a , A) =
v(b, B) > v(a , B) = v(b, A). If we denote by γ P ∈ {a , b} the action taken
eventually by the principal, we have the following result.

Proposition 5: If p < 1/2, then x = n. The principal chooses γ P = a
if γ

j
1 = a ∀ j and γ P = b otherwise. Also, Pr(γP = b | A) = 0 and Pr(γP =

a | B) = ( p
1−p × 1−μ∗∗

μ∗∗ )n.

If p > 1/2, then x = 0. The principal chooses γ P = b if γ
j
2 = b ∀ j

and γ P = a otherwise. Also, Pr(γP = b | A) = ( 1−p
p × 1−μ∗∗

μ∗∗ )n and Pr(γP =
a | B) = 0.

Proof . Fix x. Given l → 0, we have Pr(γ1 = b | A) = 0 and Pr(γ2 = a | B) =
0, so the only possible error arises when all type-1 agents announce
γ

j
1 = a ( j ∈ {1 , . . . , x}) and all type-2 agents announce γ k

2 = b (k ∈
{1 , . . . , n − x}). The remaining question is whether, if this happens, the
principal will take action a or action b.

Suppose that the principal minimizes costs with γ P = a . The
expected loss is then

10. By contrast, if individuals were rewarded as a function of the quality of the final
decision, then they would integrate the behavior of other agents in their choice to acquire
information (and, possibly, free-ride). The optimal stopping rule would then be modified
and it would not be always true that increasing the number of agents improves the quality
of the final decision.
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L A(x) = Pr(B) ·
x∏

j=1

Pr
(
γ

j
1 = a | B

) ·
n−x∏
k=1

Pr
(
γ k

2 = b | B
)

= (1 − p)
(

p
1 − p

× 1 − μ∗∗

μ∗∗

)x

.

So, conditional on taking γ P = a , the principal optimally sets x = n, and
the loss is

L A(n) = (1 − p)
(

p
1 − p

× 1 − μ∗∗

μ∗∗

)n

. (4)

Suppose that the principal minimizes costs with γ P = b. The
expected loss is then

L B(x) = Pr(A) ·
x∏

j=1

Pr
(
γ

j
1 = a | A

) ·
n−x∏
k=1

Pr
(
γ k

2 = b | A
)

= p
(

1 − p
p

× 1 − μ∗∗

μ∗∗

)n−x

.

So, conditional on taking γ P = b, the principal optimally sets x = 0, and
the loss is

L B(0) = p
(

1 − p
p

× 1 − μ∗∗

μ∗∗

)n

. (5)

Last, from (4) and (5) L A(n) ≶ L B(0) ⇔ (1 − p)( p
1−p )n ≶ p( 1−p

p )n ⇔ p ≶
1/2. �

Proposition 5 states that a principal who can choose the source of
information will not select a combination of the two types of agents in
order to compensate for the different type of errors they are likely to
make. Instead, it will be optimal to choose all agents of the same type.
As a result, the systematic tendency to favor one action over others is
still present with a committee of advisors. The type of mistakes incurred
will be identical in nature to the single agent case developed before, but
quantitatively smaller due to the greater total amount of information
collected. The idea is simple. Because the principal dislikes equally
both types of errors, he selects agents so as to minimize their likelihood
of committing a mistake, independently of the nature. We know from
Proposition 2 that the likelihood of providing an incorrect appraisal
is inversely proportional to the distance between the prior belief and
the posterior at which the agent decides to stop collecting evidence
and recommends an action (formally, μ∗∗ − p for a type-1 agent and
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p − (1 − μ∗∗) for a type-2 agent). Hence, if p < 1/2, type-1 agents are
relatively less likely to mislead the principal than type-2 agents (|μ∗∗ −
p| > |p − (1 − μ∗∗)|), so it is optimal to pick only type-1 agents. The
opposite is true when p > 1/2. Overall, fewer mistakes occur as we
increase the number of agents who provide an appraisal. However, the
systematic tendency to favor one decision persists. Note that the result
is based on the idea that, in order to minimize errors, the principal
must encourage the acquisition of information. This is achieved by
choosing agents with highest incentives to experiment given the initial
prior. In that respect, the conclusion is similar to the one obtained in
Proposition 4(i).

Again, the result has interesting implications for the examples
presented before. Consider a manager who can appoint a committee of
agents in charge of providing independent advice on which investment
strategy to follow. Proposition 5 shows that in order to reduce the
number of mistakes, all members of the committee should have the
same tastes (i.e., similar preferences that result in similar tendencies).11

Similarly, suppose that a judge has to form a jury and assume that,
for a given belief, all members agree on whether the suspect should
be convicted or released. The composition of the jury that minimizes
mistakes will require all members to be of the same type, and therefore
it will still exhibit a systematic tendency to favor one alternative. This,
in turn, implies that impartial verdicts (that is, a verdict that errs on
both sides with equal probability) are difficult to render even when all
members want to minimize mistakes.

5. Concluding Remarks

The paper has explored a general distinction between (irrational) sys-
tematically biased beliefs and (rational) systematically favored choices
that result from the endogenous and costly decision to acquire infor-
mation. We have pointed out as our major conclusion that actions with
highest variance in payoffs across states will generally be favored, at the
expense of actions with lowest variance in payoffs across states. In some
applications (e.g., R&D strategies by different firms or career choices),
the payoffs of the different alternatives are likely to be endogenously
determined and inversely related to the fraction of agents who choose
the same option. Adding this general equilibrium element and studying

11. The result however should not be overemphasized because the analysis neglects
many important issues in the selection of committee members. For example, diversity
may be optimal when different opinions in agents with common goals are due to different
sources of information.
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whether this possibility increases or decreases the tendency to favor
certain alternatives is an interesting extension left for future work.

The conclusion can be of interest for the debate on rationality in
decision-making. Consider an individual who chooses between opening
a business and working in a firm. The paper argues that a rational
individual will be satisfied with little information in favor of high
entrepreneurial skills before deciding to open his own business. By
contrast, he will need substantial evidence of high team spirit and
little entrepreneurial ability in order to decide to work in a firm.
As a result, we will observe many more low ability entrepreneurs
who start businesses (and thus fail) than high ability ones who work
for others. Because ability is not observable (only choices are), this
asymmetry in choices and failures may incorrectly lead to the conclusion
that a majority of individuals have “excessive” confidence in their
entrepreneurial skills.

At the same time, it would be absurd to pretend that our
explanation can account for all the evidence of overconfidence and
optimism documented in psychology and behavioral economics. First,
because the ingredients of our model are not relevant in all settings.12

Second, because some aggregate beliefs are impossible to reconcile with
statistical inference. And third, because the behavioral explanations
reviewed in the introduction seem to do a good job in many situations.
Yet, we feel that adding this extra element to the discussion can be very
useful if we want to improve our understanding of the reasons and
situations in which individuals distort their choices.

Appendix

A.1 Proof of Lemma 1 and Proposition 1

Type-i agent.

Date T. Denote VT
i (n) = max{xi(2μ(n) − 1); yi(1 − 2μ(n))} and let

Yt
i (n) = Vt

i (n) − xi (2μ(n) − 1) and Wt
i (n) = Vt

i (n) − yi (1 − 2μ(n)).

For t = T , we have YT
i (n) = max{0; (xi + yi)(1 − 2μ(n))} and WT

i (n) =
max{0; (xi + yi)(2μ(n) − 1)}. Because μ(n) is increasing in n,
WT

i (n) is nondecreasing and YT
i (n) is nonincreasing in n. Besides,

limn→+∞ μ(n) = 1 and limn→−∞ μ(n) = 0, so there exists n defined

12. Among other things, stakes have to be sufficiently small, otherwise the incentives
of individuals to become perfectly informed before choosing their optimal action will
crowd-out all other motivations (think for example, of a patient deciding whether to learn
from the doctor his health state concerning a curable disease). In addition, incomplete
information and costly learning have to be crucial elements at play.
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by μ(n) = 1/2 such that for all n > n then τ i,T = a , and for all n < n then
τ i,T = b.

Date T − 1.

Case 1: n � n. VT−1
i (n) = max{xi(2μ(n) − 1);δν(n)VT

i (n + 1) + δ(1 −
ν(n))VT

i (n − 1)} and

YT−1
i (n) = max

{
0, −(1 − δ)xi (2μ(n) − 1) + δν(n)YT

i (n + 1)

+ δ(1 − ν(n))YT
i (n − 1)

}
,

where YT−1
i (n) is defined on (n, +∞). Because ν(n) is increasing in n and

YT
i (n) is nonincreasing in n, we can check that the right-hand side (r.h.s.)

of YT−1
i (n) is decreasing in n, and therefore there exists a cutoff n∗∗

i,T−1
such that for all n > n∗∗

i,T−1 then τ i,T−1 = a , and for all n ∈ [n, n∗∗
i,T−1) then

τ i,T−1 = w. To solve the previous equation, the cutoff has to be such that
n∗∗

i,T−1 + 1 � n and n∗∗
i,T−1 − 1 < n, and therefore it is the solution of

0 = xi · f
(
n∗∗

i,T−1, δ
) − yi · g

(
n∗∗

i,T−1, δ
)
,

where f (n∗∗
i,T−1, δ) ≡ 2μ(n∗∗

i,T−1) − 1 − δν(n∗∗
i,T−1) (2μ(n∗∗

i,T−1 + 1) − 1) and
g(n∗∗

i,T−1, δ) = δ(1 − ν(n∗∗
i,T−1)) (1 − 2μ(n∗∗

i,T−1 − 1)). Differentiating with
respect to xi, yi, and δ we have13

∂n∗∗
i,T−1

∂xi

[
yi · gn

(
n∗∗

i,T−1, δ
) − xi · fn

(
n∗∗

i,T−1, δ
)] = f

(
n∗∗

i,T−1, δ
)

∂n∗∗
i,T−1

∂yi

[
xi · fn

(
n∗∗

i,T−1, δ
) − yi · gn

(
n∗∗

i,T−1, δ
)] = g

(
n∗∗

i,T−1, δ
)

∂n∗∗
i,T−1

∂δ

[
yi · gn

(
n∗∗

i,T−1, δ
) − xi · fn

(
n∗∗

i,T−1, δ
)] = xi · fδ

(
n∗∗

i,T−1, δ
)

−yi · gδ

(
n∗∗

i,T−1, δ
)
.

Given f (n∗∗
i,T−1, δ) > 0, g(n∗∗

i,T−1, δ) > 0,14 yi · gn(n∗∗
i,T−1, δ) − xi · fn(n∗∗

i,T−1,
δ) < 0, xi · f δ(n∗∗

i,T−1, δ) − yi · gδ(n∗∗
i,T−1, δ) < 0, we finally have

∂n∗∗
i,T−1

∂xi
< 0,

∂n∗∗
i,T−1

∂yi
> 0,

∂n∗∗
i,T−1

∂δ
> 0.

13. The subscripts n and δ denote a partial derivative with respect to that argument.
14. Note that g(n, δ) > 0 for all n but f (n, δ) may take negative values. However, to

solve the equation above, the cutoff must be such that f (n∗∗
i,T−1, δ) > 0.
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Case 2: n � n. VT−1
i (n) = max{yi(1 − 2μ(n)); δν(n)VT

i (n + 1) + δ(1 − ν(n))
VT

i (n − 1)} and

WT−1
i (n) = max

{
0, −(1 − δ)yi (1 − 2μ(n)) + δν(n)WT

i (n + 1)

+ δ(1 − ν(n))WT
i (n − 1)

}
,

where WT−1
i (n) is defined on (−∞, n). Because ν(n) is increasing in n

and WT
i (n) is nondecreasing in n, we can check that the r.h.s. of WT−1

i (n)
is increasing in n, and therefore there exists a cutoff n∗

i,T−1 such that for
all n ∈ (n∗

i,T−1, n] then τ i,T−1 = w, and for all n < n∗
i,T−1 then τ i,T−1 = b.

This cutoff has to be such that n∗
i,T−1 + 1 > n and n∗

i,T−1 − 1 ≤ n, so it is
solution of

0 = yi · r
(
n∗

i,T−1, δ
) − xi · s

(
n∗

i,T−1, δ
)
,

where r (n∗
i,T−1, δ) = 1 − 2μ(n∗

i,T−1) − δ(1 − ν(n∗
i,T−1)) (1 − 2μ(n∗

i,T−1 − 1))
and s(n∗

i,T−1, δ) = δν(n∗
i,T−1)(2μ(n∗

i,T−1 + 1) − 1). Again, differentiating
with respect to xi, yi, and δ we have

∂n∗
i,T−1

∂xi

[
yi · rn

(
n∗

i,T−1, δ
) − xi · sn

(
n∗

i,T−1, δ
)] = s

(
n∗

i,T−1, δ
)

∂n∗
i,T−1

∂yi

[
xi · sn

(
n∗

i,T−1, δ
) − yi · rn

(
n∗

i,T−1, δ
)] = r

(
n∗

i,T−1, δ
)

∂n∗
i,T−1

∂δ

[
yi · rn

(
n∗

i,T−1, δ
) − xi · sn

(
n∗

i,T−1, δ
)] = xi · sδ

(
n∗

i,T−1, δ
)

− yi · rδ

(
n∗

i,T−1, δ
)
.

Given s(n∗
i,T−1, δ) > 0, r (n∗

i,T−1, δ) > 0, yi · rn(n∗
i,T−1, δ) − xi · sn(n∗

i,T−1,
δ) < 0, xi · sδ(n∗

i,T−1, δ) − yi · r δ(n∗
i,T−1, δ) > 0, we finally have

∂n∗
i,T−1

∂xi
< 0,

∂n∗
i,T−1

∂yi
> 0,

∂n∗
i,T−1

∂δ
< 0.

The proof is completed using a simple recursive method.15

15. For the reader unfamiliar with this method, the technique is very simple. Basically,
we have already proved that some properties (that will be labeled below as (A1)–(A5) or
(A1′)–(A5′) depending on whether n � n or n � n) hold at dates T and T − 1. The second
step consists in assuming that these properties hold at a given date t ∈ {1 , . . . , T − 1},
that we leave unspecified. If, starting form this assumption, we are able to prove that the
properties also hold at t − 1, then we have proved that the properties hold for all t ∈
{0 , . . . , T}.
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Case 1: n � n. Vt−1
i (n) = max{xi(2μ(n) − 1);δν(n)Vt

i (n + 1) + δ(1 −
ν(n))Vt

i (n − 1)} and

Yt
i (n) = max

{
0, −(1 − δ)xi (2μ(n) − 1) + δν(n)Yt+1

i (n + 1)

+ δ(1 − ν(n))Yt+1
i (n − 1)

}
Yt−1

i (n) = max
{
0, −(1 − δ)xi (2μ(n) − 1) + δν(n)Yt

i (n + 1)

+ δ(1 − ν(n))Yt
i (n − 1)

}
.

Suppose that the following assumptions (A1)–(A5) hold.

(A1): Yt
i (n) is nonincreasing in n and there exists n∗∗

i,t such that τ i,t = a
if n > n∗∗

i,t and τ i,t = w if n ∈ [n, n∗∗
i,t).

(A2): Yt
i (n) � Yt+1

i (n) and therefore n∗∗
i,t >n∗∗

i,t+1.
(A3): Yt

i (n, xi) � Yt
i (n, x′

i ) if xi > x′
i (and therefore ∂n∗∗

i,t/∂xi < 0).
(A4): Yt

i (n, yi) � Yt
i (n, yi

′) if yi > yi
′ (and therefore ∂n∗∗

i,t/∂yi > 0).
(A5): Yt

i (n, δ) � Yt
i (n, δ′) if δ > δ′ (and therefore ∂n∗∗

i,t/∂δ > 0).

Given (A1), the r.h.s. of Yt−1
i (n) is decreasing in n, so Yt−1

i (n) is
nonincreasing in n. Therefore, there exists a unique cutoff n∗∗

i,t−1 such
that for all n > n∗∗

i,t−1 then τ i,t−1 = a , and for all n ∈ [n, n∗∗
i,t−1) then

τ i,t−1 = w. Also, given (A2), the r.h.s. of Yt−1
i (n) is greater or equal than

the r.h.s. of Yt
i (n) and therefore Yt−1

i (n) � Yt
i (n). Overall, both (A1) and

(A2) hold at date t − 1. Furthermore, n∗∗
i,t−1 >n∗∗

i,t . Now, denote

Yt−1
i (n, xi ) = max

{
0, −(1 − δ)xi (2μ(n) − 1) + δν(n)Yt

i (n + 1, xi )

+ δ(1 − ν(n))Yt
i (n − 1, xi )

}
Yt−1

i (n, x′
i ) = max

{
0, −(1 − δ)x′

i (2μ(n) − 1) + δν(n)Yt
i (n + 1, x′

i )

+ δ(1 − ν(n))Yt
i (n − 1, x′

i )
}
.

By (A3), if xi > x′
i then Yt

i (n + 1, xi) � Yt
i (n + 1, x′

i ) and Yt
i (n − 1, h) �

Yt
i (n − 1, x′

i ). Therefore, Yt−1
i (n, h) � Yt−1

i (n, x′
i ). This means that (A3)

holds at date t − 1 and, as a consequence, that ∂n∗∗
i,t−1/∂xi < 0. Using a

similar reasoning, it is immediate that (A4) and (A5) also hold at t − 1
and therefore that ∂n∗∗

i,t−1/∂yi > 0 and ∂n∗∗
i,t−1/∂ δ > 0.

Case 2: n � n. Vt−1
i (n) = max{yi(1 − 2μ(n)); δν(n)Vt

i (n + 1) + δ(1 −
ν(n))Vt

i (n − 1)} and
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Wt
i (n) = max

{
0, −(1 − δ)yi (1 − 2μ(n)) + δν(n)Wt+1

i (n + 1)

+ δ(1 − ν(n))Wt+1
i (n − 1)

}
Wt−1

i (n) = max
{
0, −(1 − δ)yi (1 − 2μ(n)) + δν(n)Wt

i (n + 1)

+ δ(1 − ν(n))Wt
i (n − 1)

}
Suppose that the following assumptions (A1′)–(A5′) hold.

(A1′): Wt
i (n) is nondecreasing in n and there exists n∗

i,t such that τ i,t = b
if n < n∗

i,t and τ i,t = w if n ∈ (n∗
i,t, n].

(A2′): Wt
i (n) � Wt+1

i (n) and therefore n∗
i,t < n∗

i,t+1.
(A3′): Wt

i (n, xi) � Wt
i (n, x′

i ) if xi > x′
i (and therefore ∂n∗

i,t/∂xi < 0).
(A4′): Wt

i (n, yi) � Wt
i (n, yi

′) if yi > yi
′ (and therefore ∂n∗

i,t/∂yi > 0).
(A5′): Wt

i (n, δ) � Wt
i (n, δ′) if δ > δ′ (and therefore ∂n∗

i,t/∂δ < 0).

Given (A1′), the r.h.s. of Wt−1
i (n) is increasing in n, so Wt−1

i (n) is
nondecreasing in n. Therefore, there exists a unique cutoff n∗

i,t−1 such
that for all n < n∗

i,t−1 then τ i,t−1 = b, and for all n ∈ (n∗
i,t−1, n] then

τ i,t−1 = w. Also, given (A2′), the r.h.s. of Wt−1
i (n) is greater or equal than

the r.h.s. of Wt
i (n) and therefore Wt−1

i (n) � Wt
i (n). Overall, both (A1′) and

(A2′) hold at date t − 1. Furthermore, n∗
i,t−1 < n∗

i,t. Now, denote

Wt−1
i (n, xi ) = max

{
0, −(1 − δ)yi (1 − 2μ(n)) + δν(n)Wt

i (n + 1, xi )

+ δ(1 − ν(n))Wt
i (n − 1, xi )

}
Wt−1

i (n, x′
i ) = max

{
0, −(1 − δ)yi (1 − 2μ(n)) + δν(n)Wt

i (n + 1, x′
i )

+ δ(1 − ν(n))Wt
i (n − 1, x′

i )
}
.

By (A3′), if xi > x′
i then Wt

i (n + 1, xi) � Wt
i (n + 1, x′

i ) and Wt
i (n − 1, xi) �

Wt
i (n − 1, x′

i ). Therefore, Wt−1
i (n, xi) � Wt−1

i (n, x′
i ). This means that (A3′)

holds at date t − 1 and, as a consequence, that ∂n∗
i,t−1/∂xi < 0. Using a

similar reasoning, it is immediate that (A4′) and (A5′) also hold at t − 1
and therefore that ∂n∗

i,t−1/∂yi > 0 and ∂n∗
i,t−1/∂ δ < 0.

Type-1 and Type-2 agents.
Type-1 and type-2 agents are fully symmetric. At date t, there exists
n∗∗

1,t s.t. τ 1,t = a if n > n∗∗
1,t and τ 1,t = w if n ∈ [n, n∗∗

1,t). There also exists
n∗

2,t s.t. τ 2,t = b if n < n∗
2,t and τ 2,t = w if n ∈ (n∗

2,t, n]. Furthermore, by
symmetry, n∗

2,t is such that n − n∗
2,t = n∗∗

1,t − n, that is μ(n∗∗
1,t) = 1 − μ(n∗

2,t).
Similarly, if at date t there exists n∗

1,t s.t. τ 1,t = b if n < n∗
1,t and τ 1,t = w

if n ∈ (n∗
1,t, n], then there also exists n∗∗

2,t s.t. τ 2,t = a if n > n∗∗
2,t and τ 2,t =

w if n ∈ [n, n∗
2,t). Furthermore, n∗∗

2,t is such that n∗∗
2,t − n = n − n∗

1,t , that is
μ(n∗

1,t) = 1 − μ(n∗∗
2,t).
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Note that if h = l, then for all t we have μ(n∗
1,t) = 1 − μ(n∗∗

1,t)
and μ(n∗

2,t) = 1 − μ(n∗∗
2,t). As a result, n∗

2,t = n∗
1,t < n and n∗∗

2,t = n∗∗
1,t > n.

Also, we know that
∂n∗∗

1,t
∂h < 0 and

∂n∗
1,t

∂h < 0 (which, again by symmetry,

implies that
∂n∗

2,t
∂h > 0 and

∂n∗∗
2,t

∂h > 0). Therefore, for all h > l we have
n∗

1,t < n∗
2,t < n < n∗∗

1,t < n∗∗
2,t .

Summing up, when δ < 1, h > l > 0 and T → +∞, we have
n∗

1 < n∗
2 < n < n∗∗

1 < n∗∗
2 where μ(n∗∗

1 ) = 1 − μ(n∗
2) and μ(n∗

1) = 1 −
μ(n∗∗

2 ). Moreover, ∂n∗∗
1

∂h < 0, ∂n∗∗
1

∂l > 0, ∂n∗∗
1

∂δ
> 0, ∂n∗

1
∂h < 0, ∂n∗

1
∂l > 0, ∂n∗

1
∂δ

< 0
and ∂n∗

2
∂h > 0, ∂n∗

2
∂l < 0, ∂n∗

2
∂δ

< 0, ∂n∗∗
2

∂h > 0, ∂n∗∗
2

∂l < 0, ∂n∗∗
2

∂δ
> 0.

A.2 Fixed Per-Unit Cost of Sampling

The decision at date T is the same as in Section A.1. The rest of the proof
follows similar steps as in Section A.1. We present only a sketch. At date
T − 1, there are two cases.

Case 1: n � n. ṼT−1
i (n) = max{xi (2μ(n) − 1); ν(n)ṼT

i (n + 1) + (1 −
ν(n))ṼT

i (n − 1) − c} and

ỸT−1
i (n) = max

{
0, ν(n)ỸT

i (n + 1) + (1 − ν(n))ỸT
i (n − 1) − c

}
,

where ỸT−1
i (n) is defined on (n, +∞). The r.h.s. of ỸT−1

i (n) is decreasing
in n, and therefore there exists a cutoff ñ∗∗

i,T−1 such that for all n > ñ∗∗
i,T−1

then τ i,T−1 = a , and for all n ∈ [n, ñ∗∗
i,T−1) then τ i,T−1 = w. The cutoff is

the solution of

c = [xi + yi ] · g̃
(
ñ∗∗

i,T−1

)
,

where g̃(ñ∗∗
i,T−1) = (1 − ν(ñ∗∗

i,T−1))(1 − 2μ(ñ∗∗
i,T−1 − 1)). Note that g̃(n) is

decreasing in n for all n. Differentiating with respect to xi, yi and c
we have

∂ñ∗∗
i,T−1

∂xi
> 0,

∂ñ∗∗
i,T−1

∂yi
> 0,

∂ñ∗∗
i,T−1

∂c
< 0.

Suppose x1 = h, y1 = l, x2 = l and y2 = h, then
∂ñ∗∗

1,T−1
∂h = ∂ñ∗∗

2,T−1
∂h . Then, for

all h > l > 0, we have ñ∗∗
1,T−1 = ñ∗∗

2,T−1.

Case 2: n � n. ṼT−1
i (n) = max{yi (1 − 2μ(n)); ν(n)ṼT

i (n + 1) + (1 −
ν(n))ṼT

i (n − 1) − c} and

W̃T−1
i (n) = max

{
0, ν(n)W̃T

i (n + 1) + (1 − ν(n))W̃T
i (n − 1) − c

}
,

where W̃T−1
i (n) is defined on (−∞, n). The r.h.s. of W̃T−1

i (n) is increas-
ing in n, and therefore there exists a cutoff ñ∗

i,T−1 such that for all
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n ∈ (ñ∗
i,T−1, n] then τ i,T−1 = w, and for all n < ñ∗

i,T−1 then τ i,T−1 = b.
The cutoff is solution of

c = [xi + yi ] · s̃
(
ñ∗

i,T−1, δ
)

where s̃(ñ∗
i,T−1) = ν(ñ∗

i,T−1)(2μ(ñ∗
i,T−1 + 1) − 1). Again, differentiating

with respect to xi, yi and c we have

∂ñ∗
i,T−1

∂xi
< 0,

∂ñ∗
i,T−1

∂yi
< 0,

∂ñ∗
i,T−1

∂c
> 0.

Suppose x1 = h, y1 = l, x2 = l and y2 = h, then
∂ñ∗

1,T−1
∂h = ∂ñ∗

2,T−1
∂h . Then, for

all h > l > 0, we have ñ∗
1,T−1 = ñ∗

2,T−1.
The proof is completed using a similar recursive method as in

Section A.1.

Case 1: n � n. Ṽt−1
i (n) = max{xi (2μ(n) − 1); ν(n)Ṽt

i (n + 1) + (1 − ν(n)) ×
Ṽt

i (n − 1) − c} and

Ỹt
i (n) = max

{
0, ν(n)Ỹt+1

i (n + 1) + (1 − ν(n))Ỹt+1
i (n − 1) − c

}
Ỹt−1

i (n) = max
{
0, ν(n)Ỹt

i (n + 1) + (1 − ν(n))Ỹt
i (n − 1) − c

}
.

Suppose that the following assumptions (A1)–(A6) hold.

(A1): Ỹt
i (n) is nonincreasing in n and there exists ñ∗∗

i,t such that τ i,t = a
if n > ñ∗∗

i,t and τ i,t = w if n ∈ [n, ñ∗∗
i,t).

(A2): Ỹt
i (n) � Ỹt+1

i (n) and therefore ñ∗∗
i,t > ñ∗∗

i,t+1.
(A3): Ỹt

i (n, xi ) � Ỹt
i (n, x′

i ) if xi > x′
i (and therefore ∂ñ∗∗

i,t/∂xi > 0).
(A4): Ỹt

i (n, yi ) � Ỹt
i (n, y′

i ) if yi > yi
′ (and therefore ∂ñ∗∗

i,t/∂yi > 0).
(A5): Ỹt

i (n, c) � Ỹt
i (n, c′) if c > c′ (and therefore ∂ñ∗∗

i,t/∂c < 0).
(A6): Ỹt

1(n) = Ỹt
2(n) when x1 = h, y1 = l, x2 = l and y2 = h (and therefore

ñ∗∗
1,t = ñ∗∗

2,t).

Given (A1), the r.h.s. of Ỹt−1
i (n) is decreasing in n, so Ỹt−1

i (n) is
nonincreasing in n. Therefore, there exists a unique cutoff ñ∗∗

i,t−1 such
that for all n > ñ∗∗

i,t−1 then τ i,t−1 = a , and for all n ∈ [n, ñ∗∗
i,t−1) then

τ i,t−1 = w. Also, given (A2), the r.h.s. of Yt−1
i (n) is greater or equal

than the r.h.s. of Ỹt
i (n) and therefore Ỹt−1

i (n) � Ỹt
i (n). Overall, both (A1)

and (A2) hold at date t − 1. Furthermore, ñ∗∗
i,t−1 > ñ∗∗

i,t . Now, denote:

Ỹt−1
i (n, xi ) = max

{
0, ν(n)Ỹt

i (n + 1, xi ) + (1 − ν(n))Ỹt
i (n − 1, xi ) − c

}
Ỹt−1

i (n, x′
i ) = max

{
0, ν(n)Ỹt

i (n + 1, x′
i ) + (1 − ν(n))Ỹt

i (n − 1, x′
i ) − c

}
.

By (A3), if xi > x′
i then Ỹt

i (n + 1, xi ) � Ỹt
i (n + 1, x′

i ) and Ỹt
i (n − 1, h) �

Ỹt
i (n − 1, x′

i ). Therefore, Ỹt−1
i (n, h) � Ỹt−1

i (n, x′
i ). This means that (A3)



454 Journal of Economics & Management Strategy

holds at date t − 1 and, as a consequence, that ∂ñ∗∗
i,t−1/∂xi < 0. Using a

similar reasoning, it is immediate that (A4) and (A5) also hold at t − 1
and therefore that ∂ñ∗∗

i,t−1/∂yi > 0 and ∂ñ∗∗
i,t−1/∂c < 0. Last, given (A6),

Ỹt
1(n) = Ỹt

2(n) and ñ∗∗
1,t−1 = ñ∗∗

2,t−1.

Case 2: n � n. Ṽt−1
i (n) = max{yi (1 − 2μ(n)); ν(n)Ṽt

i (n + 1) + (1 − ν(n)) ×
Ṽt

i (n − 1) − c} and

W̃t
i (n) = max

{
0, ν(n)W̃t+1

i (n + 1) + (1 − ν(n))W̃t+1
i (n − 1) − c

}
W̃t−1

i (n) = max
{
0, ν(n)W̃t

i (n + 1) + (1 − ν(n))W̃t
i (n − 1) − c

}
Suppose that the following assumptions (A1′)–(A6′) hold.

(A1′): W̃t
i (n) is nondecreasing in n and there exists ñ∗

i,t such that τ i,t = b
if n < ñ∗

i,t and τ i,t = w if n ∈ (ñ∗
i,t, n].

(A2′): W̃t
i (n) � W̃t+1

i (n) and therefore ñ∗
i,t < ñ∗

i,t+1.
(A3′): W̃t

i (n, xi ) � W̃t
i (n, x′

i ) if xi > x′
i (and therefore ∂ñ∗

i,t/∂xi < 0).
(A4′): W̃t

i (n, yi ) � W̃t
i (n, y′

i ) if yi > yi
′ (and therefore ∂ñ∗

i,t/∂yi < 0).
(A5′): W̃t

i (n, c) � W̃t
i (n, c′) if c > c′ (and therefore ∂ñ∗

i,t/∂c > 0).
(A6′): W̃t

1(n) = W̃t
2(n) when x1 = h, y1 = l, x2 = l and y2 = h (and

therefore ñ∗
1,t = ñ∗

2,t).

Given (A1′), the r.h.s. of W̃t−1
i (n) is increasing in n, so W̃t−1

i (n)
is nondecreasing in n. Therefore, there exists a unique cutoff ñ∗

i,t−1
such that for all n < ñ∗

i,t−1 then τ i,t−1 = b, and for all n ∈ (ñ∗
i,t−1, n] then

τ i,t−1 = w. Also, given (A2′), the r.h.s. of W̃t−1
i (n) is greater or equal than

the r.h.s. of W̃t
i (n) and therefore W̃t−1

i (n) � W̃t
i (n). Overall, both (A1′)

and (A2′) hold at date t − 1. Furthermore, ñ∗
i,t−1 < ñ∗

i,t. Now, denote

W̃t−1
i (n, xi ) = max

{
0, ν(n)W̃t

i (n + 1, xi ) + (1 − ν(n))W̃t
i (n − 1, xi ) − c

}
W̃t−1

i (n, x′
i ) = max

{
0, ν(n)W̃t

i (n + 1, x′
i ) + (1 − ν(n))W̃t

i (n − 1, x′
i ) − c

}
By (A3′), if xi > x′

i then W̃t
i (n + 1, xi ) � W̃t

i (n + 1, x′
i ) and W̃t

i (n − 1, xi ) �
W̃t

i (n − 1, x′
i ). Therefore, W̃t−1

i (n, xi ) � W̃t−1
i (n, x′

i ). This means that (A3′)
holds at date t − 1 and, as a consequence, that ∂ñ∗

i,t−1/∂xi < 0. Using a
similar reasoning, it is immediate that (A4′) and (A5′) also hold at t − 1
and therefore that ∂ñ∗

i,t−1/∂yi < 0 and ∂ñ∗
i,t−1/∂c > 0. Last, given (A6′),

W̃t
1(n) = W̃t

2(n) and ñ∗
1,t−1 = ñ∗

2,t−1.
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