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a b s t r a c t

I study an allocation mechanism of a single item in the presence of type-dependent externalities be-
tween bidders. The type-dependency introduces countervailing incentives and the allocation sometimes
requires that types in an interior subset obtain their reservation utility. Furthermore, truth-telling re-
quires the ex-ante allocation to satisfy a non-trivial monotonicity condition. I show that this problem is
technically different from the one analyzed in related single agent settings. I provide a procedure to iden-
tify the main properties of the ex-post allocation. Typically, the solution does not entail a single reserve
price. More specifically, each agent faces an allocation rule contingent onwhether his and his rival’s types
fall below, in or above the (endogenously determined) subset of types that obtain their reservation utility.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Consider two firms in a market competing for the acquisition
of a license. There are three possible outcomes for each firm. The
license may not be allocated at all, in which case both firms get the
status quo payoff; the firm wins the license and its payoff increa-
ses; or the rival wins and the payoff of the firm decreases. Overall,
the winner induces a negative externality on the loser and the de-
signer of the allocation mechanism should reflect this in her pric-
ing strategy. The effect of negative externalities on prices has been
studied in the literature starting with Katz and Shapiro (1986) and
Kamien et al. (1992). As shown in these early studies, the asymmet-
ric ex-post interaction between firms allows the seller to extract
some payments even from the firms that do not obtain the license.
The analysis has been generalized by Jehiel et al. (1996, 1999)
with the characterization of the optimal allocation mechanism
when firms have private information about their valuation for the
good, and extended by various authors. In most of this literature,
externalities are taken to be unrelated to the agent’s valuation of
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the good.1 The optimal mechanism exhibits the same qualitative
properties as the standard optimal auction without externalities.2
The only difference is that the seller can extract payments fromnon
acquirers (which can be implemented via an entry fee), and this ex-
tra payment aswell as the reserve price increase in the externality.

Yet, it is difficult to think of realistic games and markets in
which valuations and externalities are unrelated. To see this, con-
sider again the licensing example. The valuation for the license and
the externality suffered when a rival obtains it depends on the in-
trinsic ability of the firm to both exploit the innovation and sustain
competition from a rival licensee. This suggests that valuation for
the good, suffered externality and imposed externality are linked
through underlying variables, and that the specific structure of the
industry will determine the sign and amount of the correlation.
Carrillo (1998) was the first to analyze that possibility and to char-
acterize the optimal contract with multiple agents and valuation-
dependent externalities.3 In that case, the reservation utility of the

1 In Jehiel et al. (1996), the size of the externality suffered by an agent is unknown
to him but depends only on the identity of the winner and not on his valuation. In
Jehiel et al. (1999), the externality suffered by an agent is private information and
depends on the identity of the winner but it is not correlated to his valuation. Other
mechanism design problems consider identity-dependent externalities (e.g. Aseff
and Chade, 2006 for the case of multi-unit auctions). Most of these papers will be
discussed in further detail.
2 SeeMyerson (1981) for the seminal paper on optimal auctions and Engelbrecht-

Wiggans (1980), McAfee and McMillan (1987) and Klemperer (1999) for surveys.
3 Valuation-dependent externalities have also been studied by Jehiel and

Moldovanu (2000). However, the authors restrict to particular procedures and the
analysis is not relevant to the optimal allocation problem.
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agent becomes valuation-dependent (the agent suffers the exter-
nality if he does not show up to bid and the rival is allocated the
good). This extra feature gives rise to countervailing incentives. At
equilibrium, the utility of a participating firm may bind at the bot-
tom, at the top or for interior valuations on the reservation util-
ity. Carrillo (1998) restricts attention to functional forms that allow
only for the two first situationswhich correspond to cases inwhich
the reservation utility is respectively flat or steep.4 Closely related,
Figueroa and Skreta (2009) studies the role of optimal threatswhen
several outside options may coexist. The authors consider three
cases, two of them being equivalent to two cases already analyzed
in Carrillo (1998) (the reservation utility is flat always, or steep al-
ways).5 The novelty arises in one case, when the reservation utility
can be either flat or steep. The authors show that the seller must
randomize between the two reservation utilities, and the equilib-
rium utility may bind for interior types. They provide the solution
in a numerical example in which only one bidder has private infor-
mation, reducing the problem to a single agent mechanism design
problem.

The objective of this paper is to study the problemwhen agents
have a single but type-dependent outside option, both remain
privately informed, and the equilibrium utility binds for interior
types. I therefore consider the case where the reservation util-
ity is weakly increasing (a case in-between flat and steep) in the
valuation.6 This problem is interesting because extreme cases ob-
tain rarely in concrete examples. Also, mechanisms in which the
equilibrium utility binds for interior types usually exhibit different
properties frommechanisms in which it binds at a boundary point
of the support. The study of extreme cases is therefore not without
loss of generality and it is important to address properly the more
likely scenarii. The problem turns out to be challenging to solve and
I characterize themain properties of the optimal ex-post allocation
mechanism. The mechanism must be such that the agent receives
no rent for valuations at which the equilibrium utility binds, here-
after called the ‘set of binding types’. Also, themechanism requires
some form of monotonicity of the ex-ante allocation to make sure
truth-telling is a global maximum. These two requirements act as
constraints on the optimization program of the seller.

I start by studying an unconstrained optimization program and
show that its solution violates both constraints. This is the case be-
cause the allocation to the right of each bound of the set of binding
types differs from the allocation to the left. There are two reasons
for this. First, there is a tension between the rents that must be
given below the set of binding types and above it. Indeed, giving
one extra unit of rent to a given type requires to also increase the
rents of other types, which are in different proportions if types lie
below or above the set of binding types. Second, there is also a ten-
sion between the constraints and the interest of the seller on the
set of binding types. Indeed, those types must receive no rent but
the efficient solution requires to leave rents under asymmetric in-
formation.

4 Formally, the reservation utility of the agent is flat up to a given cutoff valuation
and steeply increasing in the valuation after the cutoff. The author analyzes three
cases. In case 1, the equilibrium utility binds at the bottom (on the flat part of the
reservation utility). In case 2, the equilibrium utility binds at the top (on the steep
part of the reservation utility); and in case 3, the equilibrium utility binds at the
bottom and at the top.
5 When the reservation utility is always flat, the equilibrium utility binds at the

bottom. This case is the same as case 1 in Carrillo (1998). When the reservation
utility is steep, the equilibrium utility binds at the top. This case is the same as case
2 in Carrillo (1998).
6 We shall mention valuation-dependent positive externalities have also been

studied in Brocas (2008) and Chen and Potipiti (2010). In such studies, the outside
option is not type-dependent but countervailing incentives may arise through a
tension in the incentives to report. Similar countervailing incentives may also
arise under negative valuation-dependent externalities as shown in Brocas (2001).
For the case of positive externalities, such countervailing incentives can be quite
problematic. Chen and Potipiti (2010) study this case.
I then develop a procedure to identify a set of properties of the
optimal ex-post allocation. The procedure consists in fixing a pair
of sets of binding types and focusing on mechanisms that satisfy
the constraints while maximizing revenue. By varying the sets of
binding types, the optimalmechanism is the one yielding the high-
est revenue overall. Even though the procedure does not allow to
fully characterize the optimal mechanism, it permits to identify
two novel properties. Contrary to standard allocation problems,
the solution does not entail a single reserve price. Rather, each
agent faces an allocation rule contingent on whether he and his
rival’s types fall below, in or above the set of binding types. This is
the case because of the difference between the rents that must be
given below the set of binding types and above it. The value of al-
locating the good to an agent with a valuation falling below, in, or
above the set of binding types is therefore different for the seller,
calling for different rules. Moreover, at equilibrium, the agent with
the highest type does not necessarily obtain the good and the seller
will resort to a stochastic mechanism for some pairs of types. This
occurs sometimes because, even though allocating the good to one
agent generates a higher surplus, this allocation conflicts with the
constraints. It is therefore optimal to distort the unconstrained al-
location. These results are different from what has been obtained
previously in the literature on auctionswith externalities. This sug-
gests that a simple modification of the externality model may im-
pact dramatically the predictions. Section 2 presents themodel and
Section 3 solves for the optimal mechanism. All proofs are in the
Appendix.

2. The model

An indivisible good is offered for sale among two risk-neutral
potential buyers 1 and 2, indexed by i and j. Buyer i (he) derives
utility vi when he gets the good. We will call vi, his ‘‘willingness to
pay’’, ‘‘type’’ or ‘‘valuation’’ and v = (vi, vj) the vector of valuations
of both agents. Each vi is drawn independently from a common
knowledge distribution defined on the interval [v, v], with 0 <
v < v.

Assumption 1. Valuations vi are drawn from a uniform distribu-
tion.

This assumption is made to simplify the main argument. Let ∆ =

v − v. The valuation for the good of the seller (she) is zero. Bidder
i suffers an externality −αi(v) when bidder j ≠ i gets the good.
This externality is always negative and is a function of both the
valuation of the agent who gets the good (vj) and that of the agent
who suffers from not getting it (vi). In order to keep the analysis as
tractable as possible, we shall restrict to the following linear form:

Assumption 2. αi(v) = αavi + αbvj + γ where αa, αb and γ are
such that αi(v) > 0 ∀ vi, vj.

Under asymmetric information, the reservation utility of each
agent is given by the outcome of the auction if he does not show
up, so it is mechanism dependent. In the presence of negative ex-
ternalities, each agent wants not only to acquire the good, but also
to avoid the externality that results when the rival gets it. Then,
he is prone to pay and enter the auction if participating buys him
a chance to prevent the other agent from acquiring the good. This
generates rents that can be captured by the seller. Assuming that
the seller can commit to anymechanism proposed to the buyers, in
the optimalmechanism, the seller commits to give the good for free
to one agent if the other does not participate. In order to achieve
entry of both bidders, the seller threatens them with their worst
outcome if they do not participate, which is simply to suffer the
externality with probability one. This reduces the lower bound of
their payoff and therefore increases the rents that can be extracted
from them. Moreover, the threat is costless, since it occurs only
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out-of-equilibrium. Naturally, this heavily relies on the commit-
ment assumption.7 In the rest of the analysis, we only need tomake
sure that participating guarantees bidders at least as much utility
as their worst outside option.

We can invoke the revelation principle and restrict attention to
direct mechanisms that are incentive compatible. A direct mech-
anism is characterized by the interim probability that agent i
gets the good, Xi(v1, v2) and the associated transfers ti(v1, v2). Let
ui(vi, v

′

i) be the expected utility of bidder iwhen he participates in
the auction, his valuation is vi, he announces v′

i , and the other bid-
der discloses his true valuation vj. We denote by ui(vi) ≡ ui(vi, vi)
his expected utility under truthful revelation. We have:

ui(vi, v
′

i) = Evj


viXi(v

′

i , vj) − αi(vi, vj)Xj(v
′

i , vj) − ti(v′

i , vj)

. (1)

Also, let wi(vi) be the reservation utility of agent i, that is, his ex-
pected payoffwhen he does not participate in the auction, inwhich
case the rival gets the good for sure. It is:

wi(vi) = −αavi − αb

 v

v

vj

∆
dvj − γ . (2)

The problem of the seller is to solve program P :

P : max
 v

v

 v

v


t1(v) + t2(v)

 1
∆2

dv1dv2

s.t. ui(vi) > ui(vi, v
′

i) ∀ i, vi, v
′

i (IC)

ui(vi) > wi(vi) ∀ i, vi (IR)
Xi(vi, vj) > 0 ∀ i, vi, vj (F0)

X1(vi, vj) + X2(vi, vj) 6 1 ∀ vi, vj (F1)

where (IC) is the incentive compatibility constraint, (IR) the indi-
vidual rationality constraint and (F0) and (F1) are feasibility con-
straints. As usual (IC) is satisfied if and only if the two following
conditions hold (see Appendix A.1 for details)

ui(vi) − ui(v
′

i) =

 vi

v′
i

Evj


Xi(s, vj) − αaXj(s, vj)


ds

∀ i, v′

i 6 vi (IC1)

Evj


Xi(v

′

i , vj) − αaXj(v
′

i , vj)


6 Evj


Xi(vi, vj) − αaXj(vi, vj)


∀ i, v′

i 6 vi (IC2)

where (IC1) is the (first-order) local optimality conditionwhich en-
sures that stating the true valuation v′

i = vi is a local optimum.
(IC2) is the (second-order) monotonicity condition and it ensures
the convexity of the equilibriumutility, and therefore that the local
optimum is a global maximum. Using (IC1) and (2), we have:

d
dvi

ui(vi) = Evj [Xi(v)] − αaEvj [Xj(v)] and

d
dvi

wi(vi) = −αa.

(3)

Informational rents are costly, and the seller wants to minimize
ui(vi)−wi(vi). Therewill be at least one agentwho receives no rent

7 Although standard in the literature on auctions with externalities (see e.g.
Carrillo, 1998, Jehiel et al., 1996, 1999 etc.) and sometimes not even discussed,
this assumption is strong. If an agent does not show up, the seller will have ex-
post incentives to conduct the auction with only one bidder rather than give him
the good for free. In Brocas (2003), we show that when this assumption is relaxed,
there is a coordination problem in the behavior of agents that gives rise to multiple
equilibria.
at equilibrium, called a ‘‘binding type’’. Formally, it is a type v̂ for
which the (IR) constraint binds: ui(v̂) = wi(v̂).8 From (3), we have:

d
dvi

(ui(vi) − wi(vi)) = αa


1 − Evj [Xj(v)]


+ Evj [Xi(v)]. (4)

Combining (3) and (4), we have four qualitatively different cases9:
(i)whenαa = 0, wi(vi) is constant,ui(vi) is increasing invi and v̂ =

v. This corresponds to the model analyzed by Jehiel et al. (1996),
and shares the same technical aspects as the first case analyzed
in Carrillo (1998) as well as the first case studied in Figueroa and
Skreta (2009); (ii) when αa > 0, wi(vi) is decreasing in vi, ui(vi) is
not always monotonic in vi and v̂ = v. This case turns out to be
technically similar to case (i)10; (iii) when αa 6 −1, wi(vi) is in-
creasing in vi, ui(vi) is increasing in vi and v̂ = v; This case shares
common features with the second case analyzed in Carrillo (1998)
as well as the second case studied in Figueroa and Skreta (2009)11;
Last, (iv) when αa ∈ (−1, 0), wi(vi) is increasing in vi, ui(vi) is in-
creasing in vi and v̂ ∈ [v, v]. In this paper, we are interested in an-
alyzing the mechanism design problem in case (iv). It is illustrated
in Fig. 1.

The literature in incentive theory has fully analyzed optimal
contracting under type-dependent reservation utilities in the sin-
gle agent case (see e.g. Lewis and Sappington, 1989, Maggi and Ro-
driguez, 1995 and Jullien, 2000). To our knowledge the optimal
mechanism when the binding type is interior has not been ana-
lyzed in a multi-agent setting except in simple limit cases. The au-
thors either restricted attention to corner binding types (as in the
first two cases in Carrillo (1998) and Figueroa and Skreta (2009), or
Brocas (2013)) or treated cases boiling down to single agent prob-
lems (as in the third case in Figueroa and Skreta (2009)). Our objec-
tive is to offer a complementary analysis. Let H(vi) = Evj [Xi(vi, vj)
− αaXj(vi, vj)] from now on.

3. Optimal mechanism

3.1. The optimization program of the seller

The seller chooses a vector of interim probabilities such that
the incentive compatibility constraints ((IC1)–(IC2)), the individual
rationality constraint (IR) and the feasibility constraints ((F0)–(F1))
are satisfied. Given informational rents are costly to her, she selects
an allocation rule such that (IR) is binding.

Lemma 1. For any mechanism A with vector of interim probabilities
X = (X1(v), X2(v)) satisfying (IC1)–(IC2)–(F0)–(F1), the set of bind-
ing types is an interval V̂i(A) = [v̂a

i (A), v̂b
i (A)].

Proof. See Appendix A.2.

This results from the fact that the equilibrium utility must be
weakly increasing and convex while the reservation utility is an
increasing linear function (see Fig. 1). Also ui(vi) > wi(vi) for all
vi ∉ V̂i(A). In the absence of adequate incentives, an agent with a
valuation vi < v̂a

i (A) will over-state his type and an agent with a
valuation vi > v̂b

i (A) will under-state his type. To induce truthful
revelation, informational rents have to be decreasing up to v̂a

i (A)

and increasing after v̂b
i (A), as depicted in Fig. 1 (which is drawn for

8 At this stage, we cannot establish whether the binding type is unique or not.
9 Recall that, given (F1), we have 1 − Evj [Xj(v)] > Evj [Xi(v)].

10 However, it delivers novel economic implications due to the fact that the
equilibrium utility may not be monotonic (the r.h.s. of (IC1) is not necessarily
positive). At equilibrium, intermediate types will receive less utility compared to
low and high types. See Brocas (2013) for the complete solution of this case.
11 It also delivers new economic implications. In particular, the bidder with the
lowest valuation gets the good and the auction must be implemented with price
ceilings rather than reserve prices. See Brocas (2013).
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Fig. 1. Equilibrium and reservation utilities.

Fig. 2. Relevant sets of valuations.

the limit case where v̂a
i (A) = v̂b

i (A)). Using (IC1), the equilibrium
rent is then

ui(vi) =


wi(v̂

a
i (A)) −

 v̂ai (A)

vi

H(s)ds vi < v̂a
i (A)

wi(vi) vi ∈ V̂i(A)

wi(v̂
b
i (A)) +

 vi

v̂bi (A)

H(s)ds vi > v̂b
i (A)

(5)

and the necessary condition for (IR) to bind on V̂i(A) is

H(vi) = −αa ∀ vi ∈ V̂i(A), ∀ i. (IR)

We will call the ‘lower subset’ the set of values below the set of
binding types V i(A) = [v, v̂a

i (A)) and the ‘upper subset’ the set of
values above it, V i(A) = (v̂b

i (A), v]. These are illustrated in Fig. 2.
Overall,we are looking for a vector of interimprobabilities satis-

fying constraints (IC2)–(F0)–(F1), generating a set of binding types
satisfying Eq. (IR) and a rent profile satisfying Eq. (5). Among those,
the seller selects the one that provides highest revenue. From now
on and to economize on notations, we will omit the dependence of
those sets on themechanism A, although the reader should keep in
mind their mechanism-dependency. Using (1) and (5), the seller’s
optimization program P is now equivalent to program P̂ :

P̂ : max

I


J


I


J


Xi(v)π

IJ
i (vi, vj) + Xj(v)π

IJ
j (vi, vj)



×
1

∆2
dv −


i

 v̂ai

v

wi(v̂
a
i )

1
∆

dv

+

 v̂bi

v̂ai

wi(v)
1
∆

dv +

 v

v̂bi

wi(v̂
b
i )

1
∆

dv


s.t. (IC2)–(F0)–(F1)–(IR)

where π
IJ
i (vi, vj) is the virtual surplus of selling to agent i when

vi ∈ I and vj ∈ J ,

π
IJ
i (vi, vj) = vi − αj(v) − (v − vi)1I=V i

+ (vi − v)1I=V i

+ αa(v − vj)1J=V j
− αa(vj − v)1J=V j ,
I ∈ {V i, V̂i, V i} and J ∈ {V j, V̂j, V j}. There are 9 possible combina-
tions of I and J , yielding 9 possible virtual surpluses. Each of them
represents the net surplus that the auctioneer can extract by selling
the good to agent i rather than keeping it, adjusted for the informa-
tional rents that she is obliged to grant due to the asymmetry of in-
formation vis-a-vis bidders.When externalities are present, agents
are willing to pay to prevent the allocation to their rival. Therefore,
under complete information, the seller can extract vi from agent
i by selling the good to i or she can extract αj(v) from agent j if
she keeps the good. The net surplus of the sale to i is therefore
vi − αj(v). Under asymmetric information, the seller leaves extra
rents reflected in the extra terms. Note that the distortion due to
informational rents acts differently depending on whether a type
lies in the lower subset or the upper subset of the set of binding
types.12 Last, given the interdependency between types and exter-
nalities, increasing the probability of allocating the good to i also
affects the rents to be granted to j.

Assumption 3. αb 6 0.

This assumption guarantees that the virtual surpluses are in-
creasing in vi andmakes the problem regular in the terminology of
Myerson (1981).

3.2. The effect of countervailing incentives on the multi-agent prob-
lem

According to program P̂ , the seller must choose an allocation
rule (Xi(v), Xj(v)) that satisfies (IC2), (F0) and (F1) and generates a
set of binding types that satisfies (IR). Among all those allocations,
the optimal mechanism is the one that generates the highest
revenue. A classic procedure to solve for this type of problem is to
relax the constraints to obtain an unconstrained solution and show
that the solution satisfies the constraints ex-post. In some cases,
(IC2) is violated, and procedures have been developed to restore it.
Compared to the earlier literature, our problem is different because
(IC2) is not the only problematic constraint.We also need to satisfy
(IR). To better understand the impact of each of these constraints
and their combination on the optimization problem, we will first
consider a relaxed problem and determine which constraint is or
is not satisfied.

Suppose the seller considers mechanisms that satisfy (F0) and
(F1) and restricts attention to those that generate the highest vir-
tual surplus on each of the 9 regions provided they exist. We will
show that such a mechanism does not satisfy the remaining con-
straints (IC2) and (IR) generically, and we will study the impli-
cations of those violations. To do so, let us introduce a relaxed
optimization programwhich is as if the seller guesses arbitrary sets
V̂i and V̂j and looks for the best mechanism that satisfies (F0) and
(F1), given this guess:

P UNC (V̂i, V̂j) : max

I


J


I


J


Xi(v)π

IJ
i (vi, vj)

+ Xj(v)π
IJ
j (vi, vj)

 1
∆2

dv −


i

 v̂ai

v

wi(v̂
a
i )

1
∆

dv

+

 v̂bi

v̂ai

wi(v)
1
∆

dv +

 v

v̂bi

wi(v̂
b
i )

1
∆

dv


s.t. (F0)–(F1)

12 By increasing the probability of allocating the good to agent i at a point vi in the
lower subset, the seller must grant extra rents to all types below vi (in proportion
(vi−v)/∆). Conversely, by increasing the probability of allocating the good to agent
i at a point vi in the upper subset, the seller must grant extra rents to all types above
vi (in proportion (v − vi)/∆).
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for all I ∈ {V i, V̂i, V i} and J ∈ {V j, V̂j, V j}. Let r
IJ
i (vj) = min{vi ∈

I|π IJ(vi, vj) > 0} and hIJ(vj) = min{vi ∈ I|π IJ
i (vi, vj) > π

IJ
j (vi, vj)}.

Given our assumptions, r IJi (vj) is decreasing in vj and hIJ(vj) is in-
creasing in vj (see Appendix A.3 for details).

Lemma 2. The solution of P UNC (V̂i, V̂j) is the mechanism AUNC (V̂i,

V̂j) with the following properties.
(i) The allocation rule is such that in each IJ

XUNC
i (vi, vj) =


1 if vi > max{r IJi (vj), hIJ(vj)}
0 otherwise

(ii) AUNC (V̂i, V̂j) does not satisfy (IC2) at v̂a
i and v̂b

i ;
(iii) AUNC (V̂i, V̂j) does not satisfy (IR).
Proof. See Appendix A.3.

The solution ofP UNC (V̂i, V̂j) is obtained in the standardway. The
good is allocated to the agent that generates the highest virtual sur-
plus provided it is positive (point (i)). This allocation is depicted in
Fig. 3 which is drawn for the case v̂a

i = v̂b
i = v̂ for all i. As a con-

sequence, we have only 4 regions. In each region, the downward
slopping curves represent the reserve prices faced by each agent
(these are the curves of r IJi (vj)) and the upwards slopping curves
separate the region in which it is best to give the good to agent i
rather than j from the region in which the opposite allocation is
optimal (these are the curves of hIJ(vj)).

However, to be a possible solution of P̂ , the vector of probabili-
ties inAUNC (V̂i, V̂j)must at least (a) be such that (IC2) is satisfied, (b)
generate a unique set of binding types satisfying (IR), and (c) this
set of binding types must coincide with the guessed V̂i. Lemma 2
shows these requirements are not met. First, property (a) is vio-
lated. This is the case because the problem is not regular every-
where. Namely (IC2) is satisfied for all vi < v̂a

i , vi ∈ (v̂a
i , v̂

b
i ) and

vi > v̂b
i but the function H(vi) admits downwards jumps at v̂a

i and
v̂b
i that violates (IC2). This is illustrated in Fig. 4. Second, properties

(b) and (c) do not hold. The discontinuities at points v̂a
i and v̂b

i gen-
erate discontinuities in H(vi) and (IR) is not satisfied for free. The
set of points for which the derivative of the utility profile coincides
with that of the outside option is not V̂i. It may not be a subset ei-
ther, as illustrated in Fig. 4 that features three disjoint points for
which H(vi) = −αa. Overall, it is not possible to find a mechanism
thatmaximizes the revenue of the seller pointwise and satisfies the
constraints.

Compared to the existing literature, the violation of (IC2) shares
common features with other studies but the violation of (IR) is a
new violation. Given that the two constraints are interrelated, it
is not possible to use standard techniques to restore them start-
ing from P UNC (V̂i, V̂j). We shall spend a few paragraphs explaining
why.

The violation of (IC2) is reminiscent of the previous literature on
countervailing incentives in the single agent case (see for instance
Maggi and Rodriguez, 1995), and it relates to a tension between
the way the seller wants to solve the trade-off between rents and
efficiency when types lie in the upper and lower sets. To see this,
note that the rent ui(vi) − wi(vi) is decreasing in the lower subset
and increasing in the higher subset. In the lower subset, the seller
would like to decrease the rent bymaking the slope of the rent less
negative (andmake the expected utility come closer to the outside
option). This pushes her to increase the probability of allocating the
good compared to the full information setting. In the upper sub-
set however, the seller would like to decrease the rent by making
the slope of the rent less positive. This pushes her to decrease the
probability of allocating the good compared to the full information
setting. Overall, the seller would like to allocate the good relatively
more often in the lower subset compared to the interior set of bind-
ing types, and also relatively more often in the set of binding types
Fig. 3. Allocation AUNC .

Fig. 4. Violations of (IC2) and (IR).

compared to the upper subset. Therefore, there are discontinuities
at v̂a

i and v̂b
i .

Guesnerie and Laffont (1984) examine violations of (IC2) in
single-agent contracting problems. When the unconstrained allo-
cation violates (IC2), the solution is to construct an allocation such
that bunching occurs on intervals containing the points at which
(IC2) is violated, and that coincides with the unconstrained alloca-
tion everywhere else. In multi-agent contracting problems, Myer-
son (1981) restores (IC2) by replacing the virtual surplus with an
ironed virtual surplus that coincides with the virtual surplus except
on some intervals on which both surpluses are equal in expecta-
tion.

Our problem differs in several respects. First, our monotonicity
condition (IC2) requires some form of monotonicity of the ex-ante
allocation.13 However, there is not a unique or obvious way of dis-
torting the ex-post allocation (Xi, Xj) to restore (IC2). It could be
done by distorting the reserve price of agent i, that of agent j or the
decision rule to allocate to i versus j. This difficulty is not present
in the single-agent setting (e.g. Guesnerie and Laffont, 1984) be-
cause it is as if the ex-ante and ex-post allocations coincide (see
Appendix B for an example of a single-agent allocation problem
related to ours in which the standard approach applies). Second,
the virtual surpluses have the desired properties, making the prob-
lem regular (except at v̂a

i and v̂b
i ). The issue is that regularity is not

enough in our case: the monotonicity of the virtual surplus does
not guarantee the monotonicity of H(vi). Myerson (1981) ironing
technique is not designed for our problem. Third, themonotonicity
conditions required to induce both agents to report truthfully are
interrelated. This complication is absent from all previous frame-
works. Suppose that we modify the ex-post allocation of agent i in
the neighborhood of v̂a

i . That is, we distort the probability of allo-
cating the good to agent i for some values vj of agent j. This in turn

13 H(vi) is an expectation over the ex-post probabilities Xi and Xj .
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Fig. 5a. Region of disagreement Ŵ1 (striped area).

affects the probability of allocating the good to j for those vj. There-
fore, attempting to restore (IC2) vis-à-vis agent imodifies the shape
of the function H(vj), which may now not be monotonic where it
used to be. In other words, restoring (IC2) where it is violated may
affect the mechanism at values at which (IC2) is satisfied. This re-
sults from the interdependency of the allocation rules. Last, it is
necessary to restore (IC2) and (IR). Those two constraints are re-
lated, and the latter imposes a restriction on monotonicity: H(vi)
must be constant exactly on the set of binding types.14

3.3. Optimal mechanism with countervailing incentives

In this section we develop a procedure to identify some prop-
erties of the optimal ex-post allocation. As noted previously, (IC2)
and (IR) cannot be neglected and checked ex post. We therefore
need to construct the set of mechanisms that satisfy those con-
straints and select the optimal mechanism from that set.

For each interval V̂i, there exists a set of allmechanisms that sat-
isfy (IC2) and such that H(vi) = −αa for all vi ∈ V̂i. Whenever the
set of such mechanisms is non empty, there exists one mechanism
that yields the highest revenue to the seller. Intuitively, suchmech-
anism will entail allocation rules ‘as close as possible’ to property
(i) in Lemma 2. Given this is true for all intervals V̂i, there exists
a set of all those mechanisms that yield the highest revenues. The
optimal mechanism is the one that provides the highest revenue
among those.15

Let us focus first on the mechanism that yields highest revenue
for a given possible set of binding types V̂i. Let us fix V̂i and V̂j. Note
first that it would be a priori better to allocate to one agent to the
right of v̂a

i and to the other to the left of that point. This is the case

14 A better characterization cannot be obtained even if we limit ourselves to
the ex-ante allocation (characterize EvjXi(v)). Such an approach has been used for
example in Maskin and Riley (1984) in a different setting. The authors exploit the
symmetry of the problem to rewrite it as a single agent problem (if an optimal
mechanism A is asymmetric, then its counterpart A′ is also optimal and therefore
the symmetric mechanism that consists in implementing A with probability µ and
A′ with probability 1 − µ is also optimal). In their case, this allows to transform
the problem into a standard optimal control problem and they can characterize
properties of the optimal ex-ante allocation. In our case, however, the correlations
between externalities and valuations prevent us from rewriting the problem in a
standard form. Technically, we need to obtain an objective function that depends on
the probability of allocating the good to the agent, but this always fails: the objective
function depends also on the probability of allocating the good to the rival. To see
this, assume αb = 0 to simplify. Let Pi(vi) = EvjXi(vi, vj) and Qj(vi) = EvjXj(vi, vj),
the expected transfer paid by agent i is T (vi) = Evj ti(vi, vj) = Pi(vi) − (αavi +

γ )Qj(vi) − ui(vi). Noting that probabilities must satisfy
 v

v
Qj(vi)dvi =

 v

v
Pj(vj)dvj

is enough to obtain the expected transfer as a function of Pi(vi) only when αa ≠ 0.
15 Note that this iterative procedure compares all possiblemechanisms that satisfy
the constraints and eliminates iteratively those that are dominated.
Fig. 5b. Construction of an arbitrary Ĉ .

because the virtual surpluses are highest if the item is allocated to
the agent with the highest valuation on one side of v̂a

i and to the
agent with the lowest valuation on the other of v̂a

i . The same holds
for v̂b

i and this also applies to agent j (see Fig. 3). Recall that max-
imizing the virtual surplus in that region is precisely what causes
violations of (IC2) (as emphasized in Lemma 2). Let zi(v) (respec-
tively zj(v)) be the virtual surplus derived from selling to i (respec-
tively j) at point v and define:

Y (v) =


i zi(v) > zj(v)
j zi(v) < zj(v)

Y (v) returns the identity of the agent generating the highest virtual
surplus. For all v̂k

i , there exists vj, v
k−
i (vj) < v̂k

i and vk+
i (vj) > v̂k

i
such that

vk−
i (vj) = min


vi|Y (vi, vj) = Y (v′

i , vj) = Y (v̂k
i − ϵ, vj),

∀ v′

i ∈ [vi, v̂
k
i − ϵ], ϵ > 0 and ϵ → 0


vk+
i (vj) = max


vi|Y (vi, vj) = Y (v′

i , vj) = Y (v̂k
i + ϵ, vj),

∀ v′

i ∈ [v̂k
i + ϵ, vi], ϵ > 0 and ϵ → 0


.

Note that by construction, for all vi ∈ (vk−
i (vj), v̂

k
i ) and all v′

i ∈

(v̂k
i , v

k+
i (vj)), Y (vi, vj) ≠ Y (v′

i , vj).16 Let

Ŵ k
i = {(vi, vj)|vi ∈ (vk−

i (vj), v
k+
i (vj))} k = {a, b}

the set in R2 of all points in the neighborhood of v̂k
i such that the

allocation to the left of v̂k
i does not agree with the allocation to

its right. Consider Ŵ12 = Ŵ a
1


Ŵ a
2


Ŵ b
1


Ŵ b
2 . This set is illus-

trated in Fig. 5a for the case V̂i = v̂.17 Finally, let Ĉ be the convex
hull of Ŵ12 as illustrated in Fig. 5b, again for the case V̂i = v̂. By con-
struction, Ĉ contains all the points that generate violations of (IC2)

due to inconsistent allocations to agents 1 and 2 in AUNC (V̂i, V̂j).
Therefore, the allocation depicted in property (i) in Lemma 2 has to
be distorted in Ĉ . By construction, there is no tension in the com-
plement of Ĉ . In particular, and other things being equal, it is pre-
ferred to allocate the item to agent i when vi > vj and to agent j
when vi < vj.

16 For all vj ∈ J with J ∈ {V j, V̂j, V j}, the points va−
i (vj) coincide with hV i J (vj).

The points va+
i (vj) coincide with hV i J (vj) if v̂a

i = v̂b
i and with hV̂i J (vj) if v̂a

i ≠ v̂b
i .

Similarly, for all vj ∈ J with J ∈ {V j, V̂j, V j}, the points vb+

i (vj) coincidewith hV i J (vj).

The points vb−

i (vj) coincide with hV i J (vj) if v̂a
i = v̂b

i and with hV̂i J (vj) if v̂a
i ≠ v̂b

i .
17 Note that the upwards slopping dotted lines represent hIJ (vj) which coincide
with vk−

i (vj), v
k+
i (vj) (and, by construction, the inverse functions of vk−

j (vi), v
k+
j

(vi)).
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With this in mind, we will fix an allocation in Ĉ and we will
determine how the allocation should be completed in the comple-
ment of Ĉ to satisfy (IC2) and (IR). Among the resulting allocations,
wewill describe the one that provides highest revenue. Conversely,
we will fix an allocation in the complement of Ĉ and we will de-
termine how the allocation should be completed in Ĉ to satisfy
(IC2) and (IR), then describe the allocation that provides highest
revenue. We look for an equilibrium, that is for an allocation such
that the allocation in Ĉ is optimal given the allocation in its com-
plement and the allocation in the complement is optimal given the
allocation in Ĉ . Last, and as noted earlier, the optimal mechanism
is the best of all those equilibrium allocations revenue-wise.

We shall first make sure that the allocation in Ĉ does not violate
(IR), that is we have ‘‘enough room’’ to construct an allocation that
satisfies the constraint. For every vi, there exists an interval Ĉ(vi) =

[min{ĉl(vi), vi},max{ĉh(vi), vi}] of values vj such that (vi, vj) ∈ Ĉ
(see Fig. 4).

Definition 1. An allocation is feasible if for all i, j, 1
∆


Ĉ(vi)

(Xi(vi,

vj)−αaXj(vi, vj))dvj < −αa for all vi 6 v̂a
i , and

1
∆


Ĉ(vi)


Xi(vi, vj)−

αaXj(vi, vj)

dvj 6 −αa for all vi ∈ (v̂a

i , v̂
b
i ).

Non feasible allocations cannot be optimal and we restrict to
feasible ones.

Proposition 1. The optimal mechanism is characterized by an allo-
cation rule (X̂∗

i , X̂∗

j ), and associated sets V̂ ∗

i , V̂ ∗

j , V ∗

i , V
∗

j , V
∗

i , V
∗

j and
Ĉ∗, with the following properties:
1. The allocation in the complement of Ĉ∗ is such that for all vi > vj:

(i) Agent j never obtains the good.
(ii) For all vi ∈ V̂ ∗

i , there exists a point m(vi) ∈


v, ĉl(vi)


such

that

X̂∗

i (vi, vj) =


1 if vj ∈ (m(vi), ĉl(vi))
0 if vj < m(vi)

and set in such a way that (IR) is satisfied.

(iii) For all vi ∈ V ∗

i and such that vi < r
V∗
i V∗

j

i (vj), X̂∗

i (vi, vj) = 0
unless (IC2) is violated.

(iv) For all vi ∈ V
∗

i and such that vi > r
V∗
i V∗

j
i (vj), X̂∗

i (vi, vj) = 1.
(v) Everywhere else, X̂∗

i (vi, vj) ∈ {0, 1}.
2. The allocation in Ĉ∗ is such that

(i) If vi > vj and π
IJ
i (v) > π

IJ
j (v), then X̂∗

j (vi, vj) = 0 and
X̂∗

i (vi, vj) ∈ {0, 1}.
(ii) If vi > vj and π

IJ
i (v) < π

IJ
j (v), then either the good is not

allocated or
X̂∗

i (vi, vj) = b(vi, vj) and X̂∗

j (vi, vj) = 1 − b(vi, vj) where
b(vi, vj) is a probability.

3. The sets of binding types V̂ ∗

i ⊂ (v, v) and the complement of Ĉ∗

is never empty.
Proof. See Appendix A.4.

We will first concentrate on the allocation on the complement
of the equilibrium Ĉ∗. The reader shall keep inmind that, absent the
constraints, the revenue is maximized if the allocation satisfies (i)
in Lemma 2. In particular, it is best to allocate to i if it is above a re-
serve price. Also the surplus derived from selling to i increases in j’s
valuation: for a given vi, the seller extracts more rents from iwhen
vj is high. Moreover, it is more profitable to sell the good to the
agentwith the highest valuation anywhere outside any arbitrary Ĉ .

Keeping this inmind, the optimal allocation on the complement
of Ĉ∗ has intuitive properties illustrated in Fig. 6a. To simplify the
exposition, let us concentrate on the region below the 45° degree
line (the argument is symmetric for the region above). First and as
expected, the optimalmechanism allocates the good to agent iwho
Fig. 6a. Optimal allocation in the complement of Ĉ ({Ø, i} means that the good is
sold to i or to none).

has the highest valuation, or to no one (item (i)). Second, for ev-
ery Ĉ , every feasible allocation in Ĉ , and every allocation above the
45° line, it is always possible to satisfy (IR). Indeed, for valuations
vi ∈ V̂i the seller can allocate the good to i at points (vi, vj) making
sure that H(vi) = −αa. Given the surplus extracted from selling
to i is increasing in vj, the seller prefers to allocate the good to i
with probability 1 when the highest possible vj realize. Therefore,
i receives the object when vj > m(vi) and m(vi) is computed to
satisfy (IR). This logic applies to all arbitrary Ĉ and a fortiori to the
equilibrium allocation (item (ii)). Third, for any vi in the lower sub-
set, the virtual surplus is negative if agent i receives the goodwhen

vi < r
ViVj
i (vj). However, the allocation in that region must also be

such that (IC2) is satisfied andH(vi) < −αa. Even though the seller
finds it optimal to not allocate to i when vi is too small, some non
profitable trades may be implemented to satisfy those constraints
(item (iii)). Similarly, for any vi in the upper subset, the virtual
surplus is maximized if agent i receives the good provided vi >

r
ViVj
i (vj). In that region, increasing the probability of allocating the
good to i does not conflict with (IC2). However, it may be necessary
to give the good to imoreoften thanoptimal to satisfyH(vi) > −αa

(item (iv)). Last, when vi ∈ (r
ViVj
i (vj), r

ViVj
i (vj)), the good is either

allocated to i or not allocated at all (part (v)). Preference is given
to points that generate the highest surplus levels (and involve the
highest vj) and the decision to allocate or not is constrained by the
requirement of the constraints. Overall, and as shown in Fig. 6a, the
allocation consists in allocating to agent i except when low values
of vj realize. Again, this is true for any arbitrary Ĉ and any strategy
in Ĉ and the propertymust hold in the optimal mechanism as well.

The allocation in Ĉ∗ follows the same general principles (item
2) and is depicted in Fig. 6b. Themain difference is that, depending
on the region IJ we consider, the revenue is not always maximized
by allocating to the agent with the highest valuation. Other things
being equal, the seller wants to allocate the good to either agent as
long as it is profitable and does not conflict with the constraints.
However, and as seen in Lemma 2, following the surplus maximiz-
ing rule is the source of discontinuities. Therefore, it is necessary
to distort the allocation. Let us concentrate again on the valuations
lying below the 45° line, and fix an allocation elsewhere. The prob-
lem of the seller is to allocate the good to make sure H(vi) has the
required property in each region. Whenever it is necessary to al-
locate the good more often than what is profitable (H(vi) must be
increased), the seller allocates the good to i or j at points associ-
ated with the smallest ‘loss’. Whenever it is necessary to allocate
the good less often than profitable (H(vi) must be decreased), the
seller discriminates against pairs of valuations associated with the
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Fig. 6b. Optimal allocation in Ĉ ({Ø, i, j} means that the good is sold to i, j or to
none).

smallest surplus. Moreover, decreasing the overall probability of
allocating the item to i has a relatively bigger impact on H(vi) and
the seller tends to distort this allocation more often to satisfy the
constraints. At equilibrium, agent imay receive the goodwith some
probability when it is optimal to allocate it to j. Precisely, if vi > vj
and the surplus obtained by selling to i is greater, the seller chooses
to either allocate to i or to nobody (item (i)). However, if the sur-
plus obtained by selling to j is greater, the seller may randomize
between the two agents (item (ii)).

Last, the equilibrium V̂ ∗

i is never the full support (item 3) and
therefore the complement of Ĉ∗ is never empty. Suppose by con-
tradiction it is. The unconstrained allocation corresponding to a
guessed V̂i = V̂j = [v, v] requires to allocate the good to i when-

ever vi > vj and provided vi > r
V̂iV̂j
i (vj). This mechanism is of

course not optimal as it cannot satisfy (IR) which requires H(vi) =

−αa for all vi. Restoring the constraint requires to allocate the good
more often than optimal for low values of vi and less often than op-
timal for high values of vi. As this is costly to the seller, it creates a
motive for reducing the set of binding types.

It can be seen from Figs. 3, 6a and 6b that discontinuities and
violations in AUNC (V̂i, V̂j) are partly due to the fact that the rev-
enuemaximizing rule induces to allocate too often to agent 2when
v1 > v2 and to agent 1 when v2 > v1. This creates a misalignment
of incentives. In the optimal mechanism, the agent with the high-
est valuation obtains the good more often, that is often enough to
be induced to reveal truthfully.

4. Implications and concluding remarks

This article studies the allocation mechanism of a single item
in the presence of type-dependent externalities between two bid-
ders. The type-dependency introduces countervailing incentives.
Therefore, the optimal allocation must be sometimes such that the
equilibrium utility is equal to the reservation utility on an interior
subset of types. I have shown that this problem is technically differ-
ent from the one analyzed in related single agent settings because
the seller must manage two constraints that conflict with her ob-
jective. First, truth-telling requires the ex-ante allocation to satisfy
a non-trivial monotonicity condition. Second, the allocation must
be such that some types receive no rent. I have provided a proce-
dure to characterize the main properties of the ex-post allocation.

The optimal mechanism has two novel and interesting proper-
ties. All relate to the competition between two agents facing coun-
tervailing incentives. First, the ex-post allocation of the good is
contingent on whether each of the two types lies in the lower set,
the set of binding types or the upper set. As a consequence, a bidder
does not face a single reserve price but a family of reserve prices.
This is the case because the trade-off between efficiency and rents
is solved differently if types lie in either of these sets. The ability to
extract rents varies as a function of the relative ‘‘strength’’ of the
bidders, and the allocation rule must be tailored to it.

Second, the seller sometimes refrains from allocating the good
while it would be profitable in order to make sure the constraints
are satisfied. Interestingly, she may randomize between the two
agents. Tailoring the rules to solve optimally the trade-off between
rent extraction and efficiency creates amisalignment of incentives.
Intuitively, in this competitive setting, solving the trade-off vis-à-
vis one agent conflicts with the truth-telling requirements related
to the other agent. The seller would like to allocate more or less
often to one given agent than what is necessary to make the other
reveal. It is therefore necessary to further distort the probability of
allocating the good compared to the unconstrained mechanism.

Appendix A

A.1

Note that ui(vi, v
′

i) = ui(v
′

i , v
′

i) + (vi − v′

i)[EvjXi(v
′

i , vj) − αaEvj

Xj(v
′

i , vj)]. Then the incentive compatibility constraint is equiva-
lent to:
ui(vi, vi) ≥ ui(v

′

i , v
′

i) + (vi − v′

i)[EvjXi(v
′

i , vj)

− αaEvjXj(v
′

i , vj)]. (6)
Using this inequality twice, the incentive compatibility constraint
is equivalent to
(vi − v′

i)[EvjXi(v
′

i , vj) − αaEvjXj(v
′

i , vj)] ≤ ui(vi, vi) − ui(v
′

i , v
′

i)

≤ (vi − v′

i)[EvjXi(vi, vj) − αaEvjXj(vi, vj)]. (7)
Then the agent reveals truthfully if:
Evj


Xi(v

′

i , vj) − αaXj(v
′

i , vj)


≤ Evj


Xi(vi, vj) − αaXj(vi, vj)


∀ v′

i ≤ vi (IC2)

(7) must hold for all v′

i and all vi = v′

i + δ with δ > 0. Since
EvjXi(vi, vj)−αaEvjXj(vi, vj) is increasing in vi, we can take the Rie-
mann integral. Then, the agent reveals truthfully if we also have:

ui(vi) − ui(v
′

i) =

 vi

v′
i

Evj [Xi(s, vj) − αaXj(s, vj)]ds

∀ v′

i ≤ vi (IC1).

To complete the proof, we need to verify that (IC1) and (IC2) imply
(6). Suppose v′

i ≤ vi, then given (IC1) and (IC2), we have:

ui(vi, vi) = ui(v
′

i , v
′

i) +

 vi

v′
i

Evj [Xi(s, vj) − αaXj(s, vj)]ds

≥ ui(v
′

i , v
′

i) +

 vi

v′
i

Evj [Xi(v
′

i , vj) − αaXj(v
′

i , vj)]ds

= ui(v
′

i , v
′

i) + (vi − v′

i)[EvjXi(v
′

i , vj) − αaEvjXj(v
′

i , vj)].

The seller maximizes her expected revenue (the sum of transfers)
under constraints (IC1) and (IC2) (to induce truthtelling) and the
remaining constraints (IR), (F0) and (F1).18 �

A.2

The equilibrium utility ui(vi) must be weakly increasing (by
(IC1)) and weakly convex (by (IC2)) in vi. Furthermore, the slope of

18 Note that the proof is similar to Myerson (1981) except that we do not provide
a sufficient condition for (IR) to hold at this stage.
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the reservation utility wi(vi) is constant and equal to −αa. There-
fore, for anymechanism Awith vector of interim probabilities X =

(X1(v), X2(v)) satisfying (IC1)–(IC2)–(F0)–(F1) there is atmost one
interval V̂i(A) = [v̂a

i (A), v̂b
i (A)] such that for all vi ∈ V̂i(A)19:

d
dvi

ui(v) =
d
dvi

wi(v). (8)

Furthermore, the convexity of ui(vi) combinedwith the linearity of
wi(vi) implies that:

d
dvi

(ui(vi) − wi(vi)) < 0 ∀ vi < v̂a
i (A) and

d
dvi

(ui(vi) − wi(vi)) > 0 ∀ vi > v̂b
i (A).

(9)

Since informational rents are costly, (IR) will bind on V̂i(A), that is:

ui(vi) = wi(vi) ∀ vi ∈ V̂i(A).

This completes the proof. �

A.3

Fix V̂1 and V̂2. π
IJ
i (vi, vj) is strictly increasing in vi and vj and

π
IJ
j (vj, vi) − π

IJ
i (vi, vj) is strictly decreasing in vi and strictly in-

creasing in vj for all IJ . Let a
IJ
i (vj) be such thatπ IJ

i (aIJi (vj), vj) = 0. By
differentiating this equation and from the variations of π

IJ
i (vi, vj),

we have that aIJi (vj) is strictly decreasing in vj for all IJ . Let r
IJ
i (vj) =

min

vi ∈ I | π

IJ
i (vi, vj) > 0


, it is easy to see that r IJi (vj) = aIJi (vj)

when aIJi (vj) ∈ I . It is equal to the lower boundary of I when aIJi (vj)
falls below that boundary and it is equal to the higher boundary of
I when aIJi (vj) falls above that boundary.

Let bIJ(vj) be the point such that π
IJ
i (bIJ(vj), vj) = π

IJ
j (vj, bIJ

(vj)). By differentiating this expression and given the variations of
π

IJ
i (vi, vj), we have that bIJ(vj) is strictly increasing in vj for all IJ .

Let hIJ(vj) = min

vi ∈ I | π

IJ
i (vi, vj) > π

IJ
j (vj, vi)


, it coincides

with bIJ(vj) if bIJ(vj) is in I , it is equal to the lower boundary of I
when bIJ(vj) falls below that boundary and it is equal to the higher
boundary of I when bIJ(vj) falls above that boundary. Given the
symmetry of the virtual surplus functions, we also have:

(i) r
V iV j
i (vj) and r

V iV j
j (vi); r

V̂iV̂j
i (vj) and r

V̂iV̂j
j (vi); r

V iV j
i (vj) and

r
V iV j
j (vi); r

V iV̂j
i (vj) and r

V̂i,V j
j (vi); r

V iV j
i (vj) and r

V iV j
j (vi); r

V̂iV j
i (vj)

and r
V iV̂j
j (vi) are symmetric.

(ii) hV iV̂j(vj) and hV̂iV j(vi); hV iV j(vj) and hV iV j(vi); hV̂iV j(vj) and
hV iV̂j(vi) are symmetric. Moreover hIJ(vj) = vj for IJ = V iV j,

V̂iV̂j, V iV j.

Consider the mechanism AUNC (V̂i, V̂j) such that the seller allo-
cates the good to i if vi > max{r IJi (vj), hIJ(vj)}when vi ∈ I and vj ∈ J
and keeps it otherwise. This mechanism maximizes P UNC (V̂i, V̂j).
Let V̂ ′

i be the set of types such that H(vi) = −αa and let Ψi(·)

be the mapping from elements V̂i into elements V̂ ′

i . The mecha-
nism AUNC (V̂i, V̂j) is candidate for optimality if (IC2) is satisfied and
Ψi(V̂i) = V̂i for all i.

19 Naturally, it may be that dui(vi)/dvi > dwi(vi)/dvi for all vi or dui(vi)/dvi <

dwi(vi)/dvi for all vi .
• We first show that the mechanism does not satisfy (IC2) at v̂a
i

and v̂b
i : by inspection of π

IJ
i (vi, vj), π

IJ
j (vi, vj) and π

IJ
j (vj, vi) −

π
IJ
i (vi, vj), we have

hV i·(vj) < hV̂i·(vj) < hV i·(vj), rV i·
i (vj) < r V̂i·i (vj) < rV i·

i ,

rV i·
j (vi) < r V̂i·j (vi) < rV i·

j (vi)

implying that H(v̂a−
i ) > H(v̂a+

i ). The same applies at v̂b
i , there-

fore (IC2) is not satisfied at v̂a
i and v̂b

i .
• We now show that (IC2) is satisfied everywhere else. Let

aIJ
−1

j (vj) be the inverse function of aIJj (vi) (which exists and is
strictly decreasing because aIJj (vi) is strictly decreasing). The

two curves aIJi (vj) and aIJ
−1

j (vj) cross at v̆IJ
= (v̆

IJ
i , v̆

IJ
j ). This point

is unique20 because d
dvj

aIJ
−1

j (vj) > −1 and bIJ(v̆IJ
j ) = aIJi (v̆

IJ
j ).

Suppose that v̆IJ
∈ IJ . When vi < v̆

IJ
i , i never obtains the

good and j gets it if vj > r IJj (vi). Given the reserve price decrea-

ses in vi, then XAUNC
j (v′

i , vj) > XAUNC
j (vi, vj) when v′

i > vi. When

vi > v̆
IJ
i , i is allocated the good when vj ∈ (r IJ

−1

j (vi), hIJ−1
(vi))

and j gets it if vj > hIJ−1
(vi). Given the properties of r IJj and hIJ ,

we have necessarily XAUNC
i (v′

i , vj) − XAUNC
i (vi, vj) > −


XAUNC
j

(vi, vj) − XAUNC
j (v′

i , vj)

. Then


J X

AUNC
i (v) − αa


J X

AUNC
j (v) in-

creases in vi. Suppose now that v̆IJ
∉ IJ , either or both agents

face now a decreasing reserve price (rather than strictly de-
creasing) but the allocation is otherwise qualitatively similar
and the same argument holds for any possible sub cases of this
limit case. The same is true for all I and J and overall H(vi) in-
creases in vi at any point but at v̂a

i and v̂b
i .

• Last, as a consequence of the two previous points, Ψi(V̂i) ≠

V̂i. �

A.4

The proof has two parts.
Part 1—we first construct the mechanism that yields highest rev-
enue for given V̂i and V̂j. Note that Ĉ contains all the points that gen-
erate violations of (IC2) due to inconsistent allocations to agents 1
and 2 in the unconstrained mechanism. Also, at any point below
(respectively above) Ĉ and below (respectively above) the 45° line,
the seller always prefer to allocate the good to i (respectively to j)
or to nobody. For all vi, we define the following sets:

Ĉ(vi) =


min{ĉl(vi), vi},max{ĉh(vi), vi}


Ĉ(vi) =


min{ĉl(vi), vi}, vi


ˆC(vi) =


vi,max{ĉh(vi), vi}


D(vi) =


vi, v


, C(vi) = D(vi) \ Ĉ(vi)

D(vi) =


v, vi


, C(vi) = D(vi) \ Ĉ(vi).

Ĉ(vi) is the set of all vj such that v belongs to Ĉ where Ĉ(vi) are

those below the 45° line while ˆC(vi) are those above the 45° line,
C(vi) is the set of all vj such that v lies below Ĉ and the 45° line;
last, C(vi) is the set of all vj such that v lies above Ĉ and the 45° line.
Define the operator EBp(v) =


vj∈B

p(v)

∆
dvj where p(v) is a function

20 Note that d
dvj

aIJ
−1

j (vj) =
αah

h′−αb
where h = 1 + 1J=V j

+ 1J=V j and h′
= 1 +

1I=V i
+ 1I=V i .
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of v. Define:
Ĥ(vi) = EĈ(vi)

Xi(vi, vj) − αaEĈ(vi)
Xj(vi, vj),

ˆh(vi) = E ˆC(vi)
Xi(vi, vj) − αaE ˆC(vi)

Xj(vi, vj)

ĥ(vi) ≡ EĈ(vi)
Xi(vi, vj) − αaEĈ(vi)

Xj(vi, vj)

H(vi) = −αaEC(vi)
Xj(vi, vj), H(vi) = EC(vi)Xi(vi, vj).

By construction H(vi) = Ĥ(vi) + H(vi) + H(vi) and Ĥ(vi) =

ˆh(vi) + ĥ(vi).
Step 1: We construct the optimal mechanism in the complement
of Ĉ . We start with the values lying below the 45° line. Fix an
allocation elsewhere such that Ĥ(vi)+H(vi) < −αa for all vi 6 va

i ,
and Ĥ(vi)+H(vi) 6 −αa for all vi ∈ (v̂a

i , v̂
b
i ) (otherwise we cannot

design a feasible allocation).
• Consider vi ∈ (v̂a

i , v̂
b
i ). The value of H(vi) is uniquely defined.

Given the virtual surplus is increasing in vj, there exists a value
m(vi) such that it is optimal to set Xi(vi, vj) = 0 for all vj <
m(vi) and Xi(vi, vj) = 1 for all vj ∈ C(vi) and vj > m(vi).
Formally,H(vi) = (min(vi, ĉl(vi))−m(vi))/∆ = −αa−Ĥ(vi)−

H(vi).
• Consider vi ∈ [v, v̂a

i ). In that region, H(vi) must be increas-
ing in vi and such that H(vi) < −αa. In the unconstrained al-

location, the seller gives the good to i when vj > r
V iV j

−1

i (vi)

and to nobody otherwise. Depending on the allocation in Ĉ(vi)
and C(vi), the seller needs to distort her preferred choices if (i)

m(vi) > r
V iV j

−1

i (vi), because this would imply H(vi) > −αa

and (ii) if r
V iV j

−1

i (vi) andm(vi) cross several times, because this
would imply H(vi) is non monotonic. Therefore the seller se-
lects an allocation such that the overall H(vi) increases without
exceeding−αa−ϵ. Given everything but the reserve price faced
by i has been fixed, it is enough to look for a solution as close as
possible to the curve H(vi). Therefore, we can use the proce-
dure in Guesnerie and Laffont (1984) up to our extra constraint
H(vi) 6 −αa − ϵ. The optimal allocation yields a piecewise
weakly increasing function H(vi) that coincides with HV iV j(vi)

(inwhich case the reserve price is r
V iV j
i (vj)) except onN disjoint

intervals [vn
o , v

n
1] increasing in nwhere H(vi) = −αa − ϵn with

ϵn decreasing in n (in those intervals, the reserve price is slightly
abovem(vi)).

• Consider vi ∈ (v̂b
i , v]. In that region H(vi) must be increas-

ing and such that H(vi) > −αa. Allocating the good to i when

vj > rV iJ
−1

i (vi) (J = V j, V̂j, V j) does not conflict with (IC2). The
only concern is to give the item sufficiently often to make sure
H(vi) > −αa. Therefore, the seller may decide to give more

than optimal. For each J , there exists a function r̃V iJ(vi) < rV iJ
−1

i

(vi) such that Xi(vi, vj) = 0 if vj < r̃V iJ(vi) and Xi(vi, vj) = 1
otherwise.

• The argument is symmetric and the optimal allocation to agent
j in the region above the 45° line that does not contain Ĉ has the
same properties.
Step 2: We now characterize the properties of the optimal

allocation in Ĉ . Fix an allocation in the complement of Ĉ as well as
in ˆC(vi). Let k(vi) = H(vi)+H(vi)+

ˆh(vi).We restrict to allocations
that are feasible: if we target a given value of ĥ(vi), there exists an
allocation that allows to reach that value.
• In Ĉ , it is optimal to sell to i for some values and to j for oth-

ers. Note first that, other things being equal, it is optimal to set
Xi(v) = 0 and Xj(v) > 0 when Y (v) = j. Moreover, given the
virtual surpluses are increasing in both vi and vj, the benefit of
allocating to either agent increases in vj. Therefore, other things
being equal, it is optimal to set Xi(vi, vj) > Xi(vi, v
′

j) and Xj(vi,

vj) > Xj(vi, v
′

j) when vj > v′

j . Overall, other things being equal,
priority should be given to the values associated with higher
surplus, which should receive the good with probability 1.

• Suppose we need to distribute a given value of ĥ(vi). Given that
any allocation to i is weighted by 1, whereas any allocation to
j is weighted down by −αa < 1, it is more difficult to reach
the targeted ĥ(vi) by allocating to j. In particular, reaching ĥ(vi)
may not be possible by sticking to the optimal unconstrained
allocation and the seller may have to allocate to i instead of j
with some probability for some values. Note that, assuming it is
optimal in the unconstrained allocation to allocate the good to j
at a given point, it is best to allocate to jwith probability x and i
with probability 1−x rather than allocating to iwith probability
1. Therefore, the seller may randomize between the bidders.

• When vi ∈ (v̂a
i , v̂

b
i ), we must have ĥ(vi) = −αa − k(vi) (pro-

vided this quantity is positive), and the valuations associated
with the highest surplus obtain the good up to the point ĥ(vi) =

−αa − k(vi). If this point is not reached, the seller must allocate
the item to i with at least some probability when it is best to
allocate to j. When vi < v̂a

i , the valuations associated with the
highest surplus obtain the good provided ĥ(vi) increases in vi
and lies strictly below −αa − k(vi). When vi > v̂b

i , the valua-
tions associated with the highest surplus obtain the good pro-
vided ĥ(vi) increases in vi and lies strictly above −αa − k(vi).
The seller may also need to allocate to i with positive probabil-
ity when it would be optimal to allocate to j to guarantee ĥ(vi)
has the required property.

Step 3: The characterization obtained in step 1 holds for every
allocation in Ĉ . The characterization obtained in step 2 holds for
every allocation in the complement of Ĉ . Therefore, both sets of
properties form an equilibrium. For arbitrary V̂i and V̂j, the best
mechanism satisfies those properties.
Part 2—we now describe the optimal mechanism.
Step 1. The optimal mechanism is the one that yields highest rev-
enue among all the best mechanisms described in Part 1—Step 3.
Given all share the same properties, the optimalmechanism shares
them as well.
Step 2: We now show that the equilibrium sets of binding types
are interior and therefore the complement of Ĉ is generically non
empty. Formally, we need to prove that, at equilibrium, we do not
have v̂i

a = v and v̂i
b = v for all i = 1, 2. Suppose the contrary

holds. The unconstrained allocation is Xi(v) = 1 if vi > vj and
vi > r V̂ V̂

i (vj). In the constrained allocation however, we must have
H(vi) = −αa for all vi.
• When αa → 0, the optimal mechanism entails v̂i

a = v for all
i. This is the case because H(vi) → Evj [Xi(v)] > 0, and −αa

→ 0. At equilibrium, V̂i = [v, v̂b
i ] for all i. When αa decreases

however, it becomes costly to have an allocation such that
H(vi) = −αa for low values of vi as it requires to give the good
to j and or i when this yields negative surplus. If v̂i

a > v, in-
efficient trades when vi < v̂a

i can be avoided as we only need
to satisfy H(vi) < −αa. Overall, increasing v̂i

a by ϵ increases the
overall revenue. Therefore, at equilibrium, v̂i

a > v whenαa < 0.
• Similarly, when αa → −1, the optimal mechanism entails v̂i

b =

v for all i. This occurs because H(vi) → Evj [Xi(v) + Xj(v)] 6 1,
and−αa → 1. At equilibrium, V̂i = [v̂a

i , v] for all i. When αa in-
creases, it becomes costly to have an allocation such that H(vi)
= −αa for high values of vi as it requires to not allocate the good
to i when this yields positive surplus. If v̂i

b < v, efficient trades
when vi > v̂b

i can be undertaken because we must have now
H(vi) > −αa. Overall, decreasing v̂i

b by ϵ increases the overall
revenue. Therefore, at equilibrium, v̂i

b < v when αa > −1. �
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Appendix B

Consider the following principal–agent problem. A seller can al-
locate a good to an agent, keep the good or destroy the good. The
valuation of the agent is v ∈ [v, v]with v < v and it is drawn from
distribution F(·). If the seller keeps the good, she uses it and exerts
a negative externality −αav − γ < 0 on the agent. Destroying
the good does not generate any value or externality. We assume
Assumptions 1 and 2 hold in this setting. Moreover, suppose that
αa ∈ (−1, 0) (to make sure we are in the case where the binding
typemay be interior) and γ ≫ 0 (tomake sure that−αav−γ < 0
for all v).

Denote by X1(v) the probability of allocating the good to the
agent, X0(v) the probability of keeping the good and t1(v) the
payment from the agent to the seller. The utility of the agent if he
reports v′ is

u(v, v′) = vX1(v
′) − αavX0(v

′) − t1(v′).

Incentive compatibility requires for all v > v′:

u1(v) − u1(v
′) =

 v

v′

[X1(s) − αaX0(s)]ds (IC1)

X1(v) − αaX0(v) > X1(v
′) − αaX0(v

′) (IC2).

Given Assumption 2, theworst outside option is obtainedwhen
the seller keeps the good and therefore, individual rationality
requires u(v) > w(v) = −αav − γ . Given du

dv = X1(v) − αaX0(v)

and dw
dv = −αa, there exists at most a set of types V̂ = [v̂a, v̂b

]

such that du
dv = −αa for all v ∈ V̂ . For any set of binding types V̂ ,

the expected revenue of the seller is v̂a

v


X1(v)


v +

F(v)

f (v)


− X0(v)


αa(v +

F(v)

f (v)
) + γ


dF(v)

+

 v̂b

v̂a


X1(v)v1 − X0(v)[αav + γ ]


dF(v)

+

 v

v̂b


X1(v)


v −

1 − F(v)

f (v)


− X0(v)


αa(v −

1 − F(v)

f (v)
) + γ


dF(v)

− F(v̂a)w(v̂a) − (1 − F(v̂b))w(v̂b) −

 v̂b

v̂a
w(v)dF(v).

The problem of the seller is to maximize the expected revenue
under the constraints (IC2) and X1(v) − αaX0(v) = −αa for all
v ∈ V̂ .

Note that all virtual surpluses are increasing in v. Let r = min
{v|v +

F(v)

f (v)
> 0} (an interior solution satisfies v +

F(v)

f (v)
= 0) and

r = min{v|v −
1−F(v)

f (v)
> 0} (an interior solution satisfies v −

1−F(v)

f (v)

= 0), we have r 6 r (and r = v if v > 0). Note also that v +
F(v)

f (v)
+

αa(v +
F(v)

f (v)
) + γ > 0, v + αav + γ > 0 and v −

1−F(v)

f (v)
+ αa(v −

1−F(v)

f (v)
)+γ > 0. Therefore, and other things being equal, the seller

prefers to give the good to the agent rather than keeping it.
Consider a mechanism such that X1(v) = X0(v) = 0 if v < r

and X1(v) = 1 if v > r . This implies that V̂ ⊂ (r, r). Now, for all
v ∈ (r, v̂a), the seller’s revenue is maximized if she gives the good
to the agent (X1(v) = 1) and when v ∈ (v̂b, r), the seller’s revenue
is maximized if she destroys the good (X1(v) = X0(v) = 0). This
solution is not incentive compatible.

Given keeping the good is never beneficial, let us restrict the at-
tention to solutions such that X0(v) = 0. In that class, the optimal
solution is X1(v̂) = −αa−ϵ for all v1 ∈ (r, v̂a), X1(v̂) = −αa for all
v ∈ (v̂a, v̂b) and X1(v̂) = −αa + δ for all v ∈ (v̂b, r) where ϵ → 0
and δ → 0. The system of transfers associated to this mechanism
is:

t(v) =


γ − ϵv̂a

+ r(αa + ϵ) v ∈ (v, r)
γ − ϵv̂a v ∈ (r, v̂a)

γ v ∈ (v̂a, v̂b)

γ + δv̂b v ∈ (v̂b, r)
γ + δv̂b

+ r(1 + αa − δ) v ∈ (r, v)

yielding the expected revenue21:

γ + F(r)[r(αa + ϵ) − ϵv̂a
] − ϵv̂a

[F(v̂a) − F(r)]

+ δv̂b
[F(r) − F(v̂b)] + (1 − F(r))[δv̂b

+ r(1 + αa − δ)].

The derivatives with respect to v̂a and v̂b respectively are

−ϵ[f (v̂a)v̂a
+ F(v̂a)] ∝ −ϵ


v̂a

+
F(v̂a)

f (v̂a)


< 0

−δ[v̂bf (v̂b) − 1 + F(v̂b)] ∝ −δ


v̂b

−
1 − F(v̂b)

f (v̂b)


> 0

as long as v̂a > r and v̂b < r . Therefore it is optimal to set v̂a
= r

and v̂b
= r . Last, it is easy to see that distorting the allocation be-

low r or above r would decrease the seller’s revenue. Moreover,
increasing X0(v) on (r, r) would require decreasing the probabil-
ity of a better option (allocating the good to the agent).

Overall, in the optimalmechanism, the seller never allocates the
good when v < r , she always allocates it when v > r and she al-
locates it with probability −αa when v ∈ (r, r). She destroys the
good each time it is not allocated, except when the agent does not
show up. In that case, she keeps the item and exerts the negative
externality. Equilibrium payments are:

t(v) =


γ + rαa v ∈ (v, r)
γ v ∈ (r, r)
γ + r(1 + αa) v ∈ (r, v).

References

Aseff, J., Chade, H., 2006. An optimal auction with identity-dependent externalities.
Unpublished Manuscript.

Brocas, I., 1998. A note on type-dependent and asymmetric externalities in auctions.
Unpublished Manuscript.

Brocas, I., 2001. Auctions with type-dependent and negative externalities: the
optimal mechanism. Unpublished Manuscript, last revised, 2009.

Brocas, I., 2003. Endogenous entry in auctions with negative externalities. Theory
and Decision 54 (2), 125–149.

Brocas, I., 2008. Optimal choice of characteristics for a non-excludable good. Rand
J. Econ. 39 (1), 283–304.

Brocas, I., 2013. Optimal allocation mechanisms with type-dependent negative
externalities. Theory and Decision 75 (3), 359–387.

Carrillo, J.D., 1998. Coordination and externalities. J. Econom. Theory 78, 103–129.
Chen, B., Potipiti, T., 2010. Optimal sellingmechanismswith countervailing positive

externalities and an application to tradable retaliation in the WTO. J. Math.
Econom. 46 (5), 825–843.

Engelbrecht-Wiggans, R., 1980. Auctions and bidding models: a survey. Manag. Sci.
26, 119–142.

Figueroa, N., Skreta, V., 2009. The role of optimal threats in auction design.
J. Econom. Theory 144, 884–897.

Guesnerie, R., Laffont, J.-J., 1984. A complete solution to a class of principal–agent
problems with an application to the control of a self-managed firm. J. Public
Econ. 25 (3), 329–369.

Jehiel, P., Moldovanu, B., 2000. Auctions with downstream interaction among
buyers. Rand J. Econ. 31, 768–791.

Jehiel, P., Moldovanu, B., Stacchetti, E., 1996. How (not) to sell nuclear weapons.
Amer. Econ. Rev. 86, 814–829.

Jehiel, P., Moldovanu, B., Stacchetti, E., 1999. Multidimensional mechanism design
for auctions with externalities. J. Econom. Theory 85, 258–293.

21 Note that the expected revenue decreases in both δ and ϵ, so these numbers
must be as close as possible to 0.

http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref4
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref5
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref6
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref7
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref8
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref9
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref10
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref11
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref12
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref13
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref14


I. Brocas / Journal of Mathematical Economics 50 (2014) 22–33 33
Jullien, B., 2000. Participation constraints in adverse selection models. J. Econom.
Theory 93, 1–47.

Kamien, M., Oren, S., Tauman, Y., 1992. Optimal licensing of cost-reducing
innovations. J. Math. Econom. 21, 483–508.

Katz, M.L., Shapiro, C., 1986. How to license intangible property. Quart. J. Econ. 101,
567–589.

Klemperer, P., 1999. Auction theory: a guide to the literature. J. Econ. Surv. 13,
227–286.
Lewis, T., Sappington, D., 1989. Countevailing incentives in agency problems.
J. Econom. Theory 49, 294–313.

Maggi, G., Rodriguez, A., 1995. On countervailing incentives. J. Econom. Theory 66,
238–263.

Maskin, E., Riley, J., 1984. Optimal auctions with risk averse bidders. Econometrica
52, 1473–1518.

McAfee, P., McMillan, J., 1987. Auctions and bidding. J. Econom. Lit. 25, 699–738.
Myerson, R.B., 1981. Optimal auction design. Math. Oper. Res. 6, 58–73.

http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref15
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref16
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref17
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref18
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref19
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref20
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref21
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref22
http://refhub.elsevier.com/S0304-4068(13)00104-3/sbref23

	Countervailing incentives in allocation mechanisms with type-dependent externalities
	Introduction
	The model
	Optimal mechanism
	The optimization program of the seller
	The effect of countervailing incentives on the multi-agent problem=-1
	Optimal mechanism with countervailing incentives

	Implications and concluding remarks
	Appendix A
	Appendix B
	References


