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Abstract

When an individual performs several tasks simultaneously, processing resources must be

allocated to different brain systems to produce energy for neurons to fire. Following the

evidence from neuroscience, we model the brain as an organization in which a coordinator

allocates limited resources to the brain systems responsible for the different tasks. Systems

are privately informed about the amount of resources necessary to perform their task and

compete to obtain the resources. The coordinator arbitrates the demands while satisfying

the resource constraint. We show that the optimal mechanism is to impose to each system

with privately known needs a cap in resources that depends negatively on the amount of

resources requested by the other system. This allocation can be implemented using a bi-

ologically plausible mechanism. Finally, we provide some implications of our theory: (i)

performance can be flawless for sufficiently simple tasks, (ii) the dynamic allocation rule

exhibits inertia (current allocations are increasing in past needs), and (iii) different cog-

nitive tasks are performed by different systems only if the tasks are sufficiently important.
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1 Introduction

Our ability to handle multiple tasks simultaneously depends on the coordination of various

brain mechanisms. Research in the brain sciences has established that individual decision

making requires the allocation of scarce processing resources to the brain systems involved

in understanding tasks, planning responses, and implementing actions. The objective of

this paper is to study the relationship between the mechanisms for allocating resources in

the brain and the quality of the resulting decisions.

To this purpose, we develop a parsimonious theory of constrained optimal behavior

based on resource allocation under neurophysiological limitations. This approach affords a

new perspective on decision-making which is different from traditional bounded rationality

models, as it provides foundations for “mistakes” and “biases” in decision-making that do

not rely on the ad-hoc imposition of imperfections. The fundamental features of brain

processes that will constitute the building blocks of our theory are briefly introduced here

(the supporting evidence is reviewed more thoroughly in section 2.1).1 First, there is

brain specialization. Different brain systems are recruited to perform different tasks and

neurons in a given system respond exclusively to features of that particular task. These

neurons remain active as long as they receive resources and the task is not completed.

The behavior of neurons in a system is therefore consistent with the maximization of task

performance.2 Second, there is “communication” of needs. The consumption of resources

in a brain system triggers a signal which results in more resources being allocated to that

system. Third, the resource allocation process is centralized. Some areas of the lateral

prefrontal cortex (LPFC) play an active role when attention is divided, for instance when

two tasks have to be completed at the same time. This points to the existence of what has

been called a ‘Central Executive System’ (CES) whose role is to coordinate the systems

involved in the different tasks. Fourth, resources are scarce. The brain has a limited

capacity to deal with concurrent tasks and, as a result, it must allocate scarce resources

efficiently.

In the paper, we build an agency model based on these four fundamental brain architec-

ture principles. In our model, CES (the ‘principal’) is responsible for allocating resources

to systems with privately known needs (the ‘agents’) given a resource constraint. More

precisely, we consider the case of an individual who must perform three tasks (0, 1, 2) at

1Notice that the paper takes the brain architecture as given. It does not address important questions
related to its evolutionary rationale (see Robson (2001) and Robson and Samuelson (2009) for formal
models of the biological basis of economic behavior).

2Although this is sometimes surprising for economists, there are strong physiological and evolutionary
arguments supporting the idea that brain systems compete for resources (see section 7 for a brief review
and discussion).
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the same time, each carried out by a different system (0, 1, 2). The amount of resources

necessary to perform a task is a function of its complexity, and performance decreases

with the difference between resources needed and resources obtained. Total resources are

available in a fixed amount. CES seeks to maximize the sum of performances in the three

tasks. It knows the complexity of task 0 and extracts information from systems 1 and 2

about the complexity of tasks 1 and 2 v́ıa a communication mechanism.

We first conduct a normative analysis where we assume that CES can resort to any

communication mechanism. This allows us to restrict attention to direct revelation mech-

anisms that are incentive compatible in dominant strategies. We characterize the optimal

mechanism and show that the allocation is such that each system is guaranteed a mini-

mum level of resources. A system can obtain resources above that minimum if and only if

at least one of the other systems chooses not to exhaust its guaranteed level of resources

(Proposition 1). We then perform some comparative statics and find that a resource

monotonicity principle holds generally: (i) if one system becomes less important from

the viewpoint of CES then it receives fewer resources whereas all other systems receive

(weakly) more resources, and (ii) if the total amount of resources available increases then

all systems (weakly) benefit (Proposition 2).

The normative analysis is important in that it sets an upper bound on the attainable

performance. We then show that the optimal mechanism can be implemented using a

simple and neurophysiologically plausible process: systems receive resources at different

rates, they choose whether to deplete them and, if they do, CES decides whether to provide

more resources (Proposition 3). This finding is critical. Indeed, when we observe a simple

allocation rule, one is tempted to conclude that it is because individuals are subject to

ad-hoc limitations. Instead, our results shows that, for our problem, nothing would be

gained by resorting to more complicated mechanisms: the constrained optimal choice can

be implemented with a simple ‘grab until satiated’ procedure.

Next, we derive behavioral implications of our mechanism and confront them with the

experimental results obtained in neuroscience studies. Most notably, our theory predicts

that performance will be flawless if and only if tasks are sufficiently simple (Corollary 1). It

also predicts performance improvements over time and task-inertia: if needs at every date

are independently drawn from the same (unknown) distribution, the allocation of resources

at a certain date will depend positively on the needs experienced in the past (Proposition

4 and Corollaries 2 and 3). These results match the experimental neuroscience evidence

and arise in our framework only when needs are private information. Also, we show that

in the biologically plausible implementation mechanism, the time required to complete

an easy task is shorter the more difficult that same task was in the past (Corollary 4).
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Last, we propose a novel testable implication regarding the architecture of the brain:

from an informational viewpoint it is efficient to concentrate cognitive tasks in one system

whenever the importance of the tasks is relatively low and to separate them into different

systems otherwise (Proposition 5 and Corollary 5).

Finally, we believe our results can explain recent behavioral findings on self-control.

According to Vohs et al. (2008) and Pocheptsova et al. (2009), the exercise of self-control

impacts the performance in unrelated but effortful deliberative activities and vice versa.

These findings are attributed to the depletion of glucose by both tasks, resulting in a

shortage of resources to complete both of them efficiently (see e.g. Gaillot et al., 2007;

Masicampo and Baumeister, 2008). This echoes our theory and exemplifies the mechanism

we outline. Glucose, the critical metabolic resource, is present in the bloodstream in

limited quantities. When the individual must both exercise self-control and complete an

unrelated deliberative activity, both tasks compete for the scarce resource resulting in

decreased performance.

The plan of the paper is as follows. In section 2, we present two literature reviews:

the neuroscience evidence supporting our theory and the related research in economics. In

section 3, we describe the formal model and solve for the benchmark case with full infor-

mation. In section 4, we characterize the allocation rule under asymmetric information,

perform some comparative statics, and discuss a biologically plausible implementation

procedure. In sections 5 and 6, we discuss two behavioral implications of our theory: task

inertia in dynamic allocation problems and the incentives for specialization vs. integration

of tasks within systems. In section 7, we provide some concluding comments. Proofs of

the propositions and corollaries can be found in Appendix A2.

2 Literature in neuroscience and economics

2.1 Evidence from neuroscience

This section reviews in detail the neuroscience evidence underlying our theory.3 We will

refer to it when we introduce the formal elements of our model. We are interested in the

brain mechanisms governing decision-making when an individual is presented with two

tasks to be performed concurrently.

Tasks and systems. When a decision-maker is facing a task, populations of neurons

specialized in different features relevant for that task are recruited. These constitute a

3It can be skipped by readers who either have a background in neuroscience or are not interested in
the details of the brain architecture. Readers interested in a yet more detailed introduction to these
physiological processes are referred to Brocas (2012).
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system. To understand the ‘objective’ of a system, it is useful to look at its components:

the neurons. Neurons fire in response to certain inputs. For instance, the spiking activity

of a neuron in the visual system represents a small part of the visual environment, as

the neuron is sensitive to the presence of a few specific features only.4 As such, neurons

are only concerned about transmitting information regarding the features they are tuned

to detect. Given such a construct, a system only transmits information detected by its

components, that is, information relevant for that task. Neurons keep firing as long as

they detect relevant information. A system can therefore be represented as an entity that

cares exclusively about transmitting information to perform its own task.5

Processing resources. A task is performed through a communication process between

neurons used to detect features of the environment (in the sensory system), make choices

and send orders to act accordingly (in the motor system). Neurons use electrical impulses

and chemical signals to transmit information which requires energy delivered by the oxida-

tion of glucose extracted from arterial blood. This energy is used for propagating signals

and returning the membrane to its resting potential after firing (Attwell and Laughlin,

2001). Firing therefore relies on metabolic resources (oxygen and glucose) carried by

the bloodstream. Enhanced firing in a system indicates the system is active. Given the

relationship between firing and metabolic resources, the latter are commonly used as a

proxy for neural activity6 in a series of methods that record differentials in consumption

of metabolic resources (Fox et al., 1988; Hyder et al., 2002) or differentials in blood flow.7

This body of evidence suggests that task performance is related to the consumption of

metabolic resources8 which are, in principle, available in the bloodstream to be grabbed by

neurons.9 However, the availability of metabolic resources is only a necessary condition for

4However, neurons respond not only to the presence or absence of features but also to their values by
producing graded responses. They do so by controlling the number of spikes they fire.

5A system is related to a task. That is, neurons active in one task are part of the system performing
that task, but they can also be active in a different task involving a different system. In other words, two
systems do not need to be two physically different areas of the brain.

6The literature studying cerebral blood flow has established the existence of a functional coupling
between neural activity and brain metabolism. Cerebral activation processes are accompanied by a dynamic
adjustment of cerebral blood flow. Blood flow is correlated with oxygen delivery to the brain. The increase
in blood flow following the presentation of a task is positively related to the performance in that task
(Duschek and Schandry (2004, 2006)).

7In particular, PET monitors detect changes in blood flow, glucose usage or oxygen consumption. fMRI
signals reflect the degree of blood oxygenation and flow, and measure the blood-oxygen-level dependent
(BOLD) response.

8The joint observation that one system receives more oxygen when a certain task is performed and that
subjects with a lesion in that system are unable to perform the task provides yet another indirect support
for the idea that the system utilizes resources to perform the task.

9Some medical conditions are characterized by the inability to regulate the amount of resources in the
brain. For instance, too much or too little glucose in insulin-dependent diabetes patients have detrimental
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task performance. The metabolic cost of brain activity is high, which may be the limiting

factor for both the number of neurons that can be active at any given point in time as well

as the maximum frequency of firing of individual neurons (Lennie, 2003; Attwell and Gibb,

2005). This evidence suggests that the metabolic resources that can be used at any given

point in time are limited. Recent studies have also shown that enhanced firing is correlated

with increased attention to a stimulus, and several processes involving working memory

have been found to be fundamental to attention (see Knudsen (2007) for a review). Those

mechanisms are believed to modulate the signals sent along communication channels. In

particular only some signals gain access to working memory (competitive selection, see

Desimone and Duncan (1995)) and the strengths of the competing signals is regulated

(top down sensitivity control, see Egeth and Yantis (1997)). This literature indicates that

firing rates in a system result from a controlled usage of metabolic resources. Synaptic

plasticity is thought to be the mechanism through which such regulation occurs. We will

refer to the resources that can be used to transmit information efficiently as processing

resources, but the reader may keep in mind their relationship to other terminologies such

as attentional resources or computational resources. Processing resources are scarce and

their allocation is constrained.

Asymmetric information. Typically, neurons in a system detect information contained

in a stimulus before neurons in other systems, creating a time lag during which only part

of the brain possesses relevant information about the stimulus. This information becomes

available to other interested brain areas if and when it is transmitted. Information is not

transmitted uniformly along all existing pathways but rather selectively, so that not all

systems are aware of the information. Besides, some brain areas are either unconnected

or unidirectionally connected to the other areas. This feature of the brain anatomy is

the result of evolution, which optimizes the number and location of the highly scarce

and energetically demanding neural connections. Delayed transmission and limited neural

connectivity immediately implies a restricted flow of information or, in the economics

language, asymmetric information.

Centralization of the resource allocation process. A number of fMRI studies have found

that certain regions of the LPFC exhibit enhanced activation when two tasks are performed

simultaneously. These regions do not exhibit such enhanced activation (i) when only one

task is presented to the subject, (ii) when both tasks are presented but the subject is

instructed to selectively focus on only one of them, or (iii) when both tasks are presented

and performed sequentially (D’Esposito et al., 1995; Herath et al., 2001; Szameitat et

al., 2002; Jiang, 2004). The same phenomenon is observed for branching, that is, when

effects on cognitive functions (Cox et al., 2005).
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subjects must keep in mind a main goal while performing concurrent subgoals (Koechlin

et al., 1999). In parallel, the literature on task switching has found that several regions

of the PFC are activated when a switch occurs (Monsell, 2003). Similar findings have

been obtained with other techniques. In particular patients with brain lesions in the left

DLPFC have problems switching between the attributes they are instructed to attend to

(Rogers et al., 1998; Keele and Rafal, 2000) and subjects in a TMS study whose DLPFC

has been disrupted exhibit an impaired ability to divide attention between tasks (Johnson

et al., 2007). These results point to the plausible hypothesis of the existence of a Central

Executive System (CES) whose role is to “coordinate the concurrent processing of the

different streams of information” (Szameitat et al. (2002, p. 1184)). The CES is a construct

that has long been invoked in theoretical models of human cognition, in particular to

represent the allocation of attentional resources within working memory (Baddeley and

Hitch, 1974; Norman and Shallice, 1986). Even though the evidence reported before is

consistent with this construct, both the neuroanatomy and the specific role of the CES

are still under study. Some findings suggest a distributed CES neuroanatomy (including

regions of the LPFC) rather than a specific and unique region (Baddeley, 1998; Garavan

et al., 2000). Said differently, CES is not a physical organ and LPFC may not be the

only region showing differentiated activation in dual-tasks experiments. Moreover, the

function of the regions involved specifically in dual tasks experiments cannot be inferred

with certainty from activation patterns. However, LPFC is recurrently implicated in top-

down control (Miller and Cohen (2001)), working memory (Romo et al., 1999; Romo and

Salinas, 2003) and attention processes (Pessoa et al., 2003; Lau et al., 2004). Therefore,

its involvement in resource management seems a reasonable hypothesis.

Behavioral interferences and neural activity patterns. Single- vs. dual-task experiments

have established some interesting results on neural activation and behavioral patterns.

Studies have shown that the volume of activation is smaller in the dual-task condition

than in the sum of the two related single-task conditions (Just et al., 2001; Loose et al.,

2003; Johnson and Zatorre, 2006; Newman et al., 2007).10 Sub-additivity suggests the

existence of “biological mechanisms that place an upper bound on the amount of cortical

tissue that can be activated at any given time” (Just et al., 2001, p. 424)).11 Some other

studies highlight a significant behavioral interference when subjects perform the dual-

10These studies measure activity in the sensory and association areas that are active in one (and only one)
of the tasks. They are designed to minimize overlapping areas by choosing tasks that are known to recruit
different brain systems (e.g., mental rotation of visually depicted objects and auditory comprehension).

11A puzzling result in Just et al. (2001) is that, contrary to the other papers reviewed above, LPFC
activation does not change between the single- and dual-task treatments. A possible explanation is that
subjects are requested to perform high-level cognitive tasks so that the single-task treatment may already
be producing significant activation in the LPFC. This suggests evidence should be interpreted cautiously.
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task. In particular, reaction times (Jiang, 2004) and error rates (Szameitat et al., 2002)

increase, suggesting that the two tasks compete for attention. Behaviorally, performance

in the dual-task is lower than in the sum of the two single tasks (Just et al., 2001), which is

consistent with the above mentioned activation patterns, and with the scarcity hypothesis

of processing resources.

Combining the evidence just reviewed, we will build a theory in line with the CES

hypothesis and endow it with the ability to allocate scarce processing resources. We will

then derive some behavioral implications. Yet, our theory is abstract; the reader shall keep

in mind that the role of CES could be performed by a different brain system or process.

As such, any controversy arising over the specific role of CES should not apply to our

theoretical argument.

2.2 Related literature in economics

From a theoretical viewpoint, the problem is related to three strands of the economics

literature. First, it is related to the research on mechanism design without transfers

(see e.g., Holmström, 1977; Melumad and Shibano, 1991; Alonso and Matouschek, 2007,

2008; Martimort and Semenov, 2008; Carrasco and Fuchs, 2009; Koessler and Martimort,

2012). While the absence of transfers typically requires justification in the literature on

organizations, in our setting the neurobiology evidence suggests the lack of other means

of ‘compensation’. With respect to this literature, our paper combines aspects of mul-

tiple agents and multiple actions in a novel setting with capacity constraints. Second,

it also bears some commonalities with the axiomatic social choice literature that studies

rationing problems (see e.g., Sprumont, 1991; Barbera, Jackson and Neme, 1997; Moulin,

2000). This literature has provided characterizations of rationing mechanisms that satisfy

efficiency, strategy-proofness and some additional properties. We depart from it in two re-

spects: we consider (weakly) monotone preferences rather than single-peaked preferences

and we focus on mechanisms that maximize the expected performance of systems. As we

will show, however, the optimal mechanism does satisfy their main properties. Finally, it

is also related to the team theory literature that studies the decomposition and decentral-

ization of resource allocations when systems with a common goal are unable to fully share

all available information (as in e.g., Geanakoplos and Milgrom, 1991; see also Garicano

and Van Zandt (2013) for a recent survey). Interestingly, the optimal mechanism that

we derive also affords a decentralized implementation. In our setup, however, allocative

imperfections in the decision rules result from the systems’ self-interest rather than from

exogenous constraints on communication.

From a conceptual viewpoint, the paper is related to the behavioral economics liter-
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ature that studies decision-making when individuals have imperfect self-knowledge (see

e.g, Carrillo and Mariotti, 2000; Bénabou and Tirole, 2004, 2011; Bodner and Prelec,

2003; Brocas and Carrillo, 2005, 2008; Dal Bo and Terviö, 2007; Ali, 2011). Our model

focuses on a novel set of issues, namely performance in a multi-tasking environment. It

also departs significantly in the methodological approach: rather than building a model

of boundedly rational behavior based on introspection, empirical or experimental data,

we take the neuroscience findings about the brain architecture as inputs for modeling the

constraints in the optimization problem.12

3 The model

3.1 Systems and objectives

Based on the evidence described in section 2.1, we build the following resource allocation

model. First, there is a set of systems. Each system is responsible for a task. Systems

are composed of neurons, which demand resources. Resource deficits imply a decrease in

performance. Second, there is a Central Executive System (CES) which is responsible for

the optimal allocation of the scarce resources between systems and whose objective is to

maximize an overall performance function.

Formally, we assume there are three tasks, and system l (∈ L = {0, 1, 2}) is responsible

for task l. As reviewed in section 2.1, system l can be represented as a selfish entity focused

exclusively on the performance in its own task. Let Θl = [0, θl] be the set of possible

resources that task l may require. If θl ∈ Θl is the actual amount of resources necessary to

carry out task l flawlessly and xl are the resources allocated to system l, the system seeks

xl = θl. Without loss of generality, a system can be endowed with a performance function

Πl(xl; θl) that is maximized at xl = θl. There is a loss whenever xl < θl. The effect of too

many resources is less clear. Indeed, the system may in some cases be able to costlessly

discard resources above θl, which formally means that Πl(xl; θl) = Πl(θl; θl) for all xl ≥ θl.
In some other cases, too many resources can have counter effects on performance, which

formally means that Πl(xl; θl) < Πl(x
′
l; θl) for all xl > x′l ≥ θl. For example, excessive

attention may be counterproductive. Either way, the performance function is increasing in

xl up to θl and non-increasing above it. For the rest of the paper, we assume the following

functional form:

Πl(xl; θl) =

{
αl ul(xl − θl) if xl ≤ θl

0 if xl > θl
(1)

12In that respect, the paper is closer to Brocas and Carrillo (2008) which studies the dynamic choices of
an individual when brain systems have different mental representations of current vs. distant prospects.
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with ul(0) = 0, u′l(0) = 0, u′l(z) > 0 and u′′l (z) ≤ 0 for all z < 0. Under this formalization,

a more complex task (higher θl) requires more resources.13 As the difference between needs

and resources granted (θl−xl) increases, performance deteriorates. Resources above needs

do not hinder performance because they can be discarded by the systems at no cost.14

3.2 Optimization under full information

The optimization problem of CES consists in distributing a fixed amount of resources k

among the three systems so as to maximize an overall performance function. We formally

represent it as:

max
{x0,x1,x2}

Π0(x0; θ0) + Π1(x1; θ1) + Π2(x2; θ2)

s.t. x0 + x1 + x2 ≤ k (R)

x0 ≥ 0, x1 ≥ 0, x2 ≥ 0 (F)

The objective function is the sum of the systems’ performances, where the parameter αl
in (1) can capture either the weight of task l on the objective function of CES or a reward

system imposed externally to complete each particular task. This objective function is,

admittedly, restrictive (for example, in some settings one could expect complementarities

or substitutabilities among tasks). It seems, however, a reasonable first approximation

especially when the tasks are imposed externally. The resource constraint (R) reflects the

maximum resources k available to perform the three tasks. The feasibility constraint (F)

captures the minimum resources that can be allocated to each system. The analysis can

be trivially extended to a positive minimum amount of resources necessary for a system

to operate. The problem also presupposes that CES does not necessitate resources to

coordinate the needs of systems. This goes largely against the evidence presented in

section 2.1 but it is imposed only for simplicity.15

The problem is trivial when θ0 + θ1 + θ2 ≤ k: each system receives the resources it

needs, (i.e., xl = θl), and the excess resources are discarded. In this case, each system

performs flawlessly and performance is then maximized at zero. The problem becomes

interesting when θ0 + θ1 + θ2 > k, which immediately implies that the resource constraint

is binding. Let xFl be the solution to the problem under full information in this case.

13Note that the comparison over levels of complexity is defined within tasks not between tasks. For
example, spelling an 8-letter word is more complex than spelling a 3-letter word.

14In a previous version (Alonso, Brocas and Carrillo 2011) we showed that similar results are obtained
with a single-peaked quadratic performance function: Πl(xl − θl) = −αl (xl − θl)2 for all xl.

15Indeed, one could trivially extend the model and assume that CES requires k̃ resources for coordinating
activities and that only k − k̃ resources are available for the systems.
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Given u′(0) = 0, the individual underperforms in all tasks (xFl (θ0, θ1, θ2) < θl for all l)

except in the trivial limit case where no resources are needed (θl = 0).

4 Incomplete knowledge of needs

The more realistic and interesting situation arises when CES does not know how many

resources are required by some of the systems. As motivated in section 2.1, information

asymmetry matches the physiological evidence on brain connectivity. It introduces an

endogenous cost of resource allocation and information processing.

In the rest of the paper, we will consider two classes of systems. System 0 is responsible

for a basic motor skill task 0 which corresponds, for example, to lifting an object or looking

in a certain direction. The needs to perform this task, θ0, are known. Systems 1 and 2

are responsible for higher order cognitive tasks. These include vision, hearing, abstract

projection and language, among others. We use subscripts i and j for systems 1 and 2

with i 6= j. The needs of system i, θi, are unknown to CES, and depend crucially on

the type and difficulty of the cognitive task to be performed (face identification, auditory

comprehension, mental representation of shapes, word recognition, etc.). CES only knows

that θ1 and θ2 are independently drawn from continuous distributions with c.d.f. F 1(θ1)

and F 2(θ2) and densities f1(θ1) and f2(θ2).16 Let hi(θi) = f i(θi)
1−F i(θi) be the hazard rate

of θi. We assume that the distribution of needs of system i has an increasing hazard rate

(IHR) which, as is well known, rules out thick tails in the distribution. This condition is

imposed to ensure certain regularity properties of the solution.

Assumption 1 (IHR) hi(θ
′
i) ≥ hi(θi) for all θ′i ≥ θi.

Our objective is to determine the resource allocation mechanism which is optimal from

the viewpoint of CES given its imperfect knowledge of needs. As in the previous section,

we maintain the assumption that the resource constraint is always binding which, given

that θ1 and θ2 are unknown, can now be stated as follows.

Assumption 2 (shortage) θ0 ≥ k.

The first step of our analysis consists in adopting a normative approach and determin-

ing the optimal allocation when CES can use any conceivable communication mechanism:

each system sends a message requesting resources and CES responds with an allocation

as a function of the messages received. Applying the revelation principle, we can without

16The results can be trivially extended to more than one system (hence, more than one task) with known
needs. By contrast, extensions to three or more systems with unknown needs would be more involved.
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loss of generality restrict attention to direct revelation mechanisms where each system i

‘announces’ its needs θ̃i ∈ Θi. Based on the announcements, CES ‘commits’ to a resource

allocation rule D:

D(θ̃1, θ̃2) =
(
x0(θ̃1, θ̃2), x1(θ̃1, θ̃2), x2(θ̃1, θ̃2)

)
for (θ̃1, θ̃2) ∈ Θ1 ×Θ2.

We restrict attention to mechanisms that can be implemented in dominant strategies.

From a neuroeconomic viewpoint, implementation in dominant strategies seems most nat-

ural as it ensures that a system does not have to ‘form beliefs’ about the objectives, needs,

demands or even the ‘existence’ of other systems.17 We also assume that when a system

is indifferent between several allocations, it chooses the one that is optimal for CES. This

rules out uninteresting equilibria such as, for example, one where system i always reports

the highest needs and therefore, in equilibrium, the allocation is insensitive to system i’s

true needs.

The allocation rule is constructed in a way that, for system i, announcing θ̃i = θi is

incentive compatible in dominant strategies. Formally:

Πi(xi(θi, θj); θi) ≥ Πi(xi(θ̃i, θj); θi) ∀ i, θi, θ̃i, θj . (DSIC)

Notice that the assumptions imposed on the behavior of systems are minimal. Their

sole concern is to obtain the resources necessary to complete their tasks. Each system

realizes that resources are scarce (simply by noticing that needs are not always fulfilled)

and that their availability may depend on external factors. However, awareness of the

needs or even the existence of other systems and other tasks is not required.

The normative analysis immediately raises a question: Is it realistic to think in these

terms? The answer is yes and no. On the one hand, our entire research rests on the

fact that the brain has some well-documented physiological limitations in the availability,

transmission and processing of information. Putting no restrictions on the type of commu-

nication allowed contradicts that view. On the other hand, we show in Appendix A1 that

a reasonable two-stage mechanism where CES allocates some initial resources, systems

choose whether to consume them and, as a function of their choice, CES decides whether

to grant more resources is formally equivalent to a static incentive compatible mechanism

where systems (truthfully) report their needs. In any case, a crucial advantage of the nor-

mative analysis is that it provides an upper bound on the attainable performance of CES.

A main contribution of the paper will rest on the subsequent positive approach, where

17From a theory viewpoint it would be interesting to determine the optimal mechanism in Bayesian
strategies, as Carrasco and Fuchs (2009) do in a somewhat related theoretical setting. However, we would
have a hard time interpreting this type of mechanisms in our context.
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we investigate if the optimal allocation described in the normative analysis can indeed be

implemented using a simple and physiologically plausible mechanism.

4.1 The optimization problem

Given the imperfect knowledge of needs, we will assume that CES maximizes the expected

performance of the tasks. Among all the possible direct mechanisms, let M be the class

that admits the following representation: a mechanism D ∈ M if and only if there exist

functions x̄1(θ2) and x̄2(θ1) such that

D(θ1, θ2) =


x1(θ1, θ2) = min {θ1, x̄1(θ2)} ,
x2(θ1, θ2) = min {θ2, x̄2(θ1)} ,
x0(θ1, θ2) = k − x1(θ1, θ2)− x2(θ1, θ2).

(2)

In other words, M is the class of direct mechanisms that simply impose an upper

bound on the resources granted to each system, where this upper bound depends on the

reports of other systems. Importantly, any D ∈ M is also dominant strategy incentive

compatible. The following lemma allows us to narrow down the class of direct mechanisms

that we must consider when studying the problem faced by CES.

Lemma 1 Any feasible and dominant strategy incentive compatible mechanism that max-

imizes the expected performance of tasks must belong to M, that is, takes the form (2).

With this lemma, the problem under asymmetric information reduces to:

max
D∈M

∫ ∫ [
Π0(x0(θ1, θ2); θ0) + Π1(x1(θ1, θ2); θ1) + Π2(x2(θ1, θ2); θ2)

]
dF 1(θ1) dF 2(θ2)

s.t. x0(θ1, θ2) + x1(θ1, θ2) + x2(θ1, θ2) ≤ k ∀ θ1, θ2 (R)

x0(θ1, θ2) ≥ 0, x1(θ1, θ2) ≥ 0, x2(θ1, θ2) ≥ 0 ∀ θ1, θ2 (F)

where the dominant strategy incentive compatibility constraint (DSIC) is automatically

satisfied by the mechanism D and therefore ignored, and (R) and (F) are the resource and

feasibility constraints introduced previously. Given Assumption 2, (R) always binds at the

optimum, that is, resources are always exhausted. Using (R) to express x0 as a function

of x1 and x2, inserting this expression in Π0(·) and using (1) and (2), we can rewrite the

problem as:

P : max
D∈M

∫ ∫ [
α1 u1

(
x1(θ1, θ2)− θ1

)
+ α2 u2

(
x2(θ1, θ2)− θ2

)
+α0 u0

(
k − x1(θ1, θ2)− x2(θ1, θ2)− θ0

)]
dF 1(θ1)dF 2(θ2)

s.t. x1(θ1, θ2) ≥ 0, x2(θ1, θ2) ≥ 0, x1(θ1, θ2) + x2(θ1, θ2) ≤ k ∀ θ1, θ2 (F)

In the next section, we determine the optimal caps x̄1(θ2) and x̄2(θ1).
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4.2 Optimal resource allocation with unknown needs

Consider an allocation rule where system i receives an allocation equal to its needs θi.

Denote by yj(θi) the optimal cap on the resources allocated to system j in this case. The

cap yj(θi) is continuous, non-increasing in θi and for 0 < yj(θi) < k−θi solves the following

equation (see Lemma 3 in Appendix A2):

αj E
[
u′j

(
yj(θi)− θj

) ∣∣∣ θj ≥ yj(θi)] = α0 u
′
0

(
(k − θi − yj(θi))− θ0

)
. (3)

This equation has an intuitive interpretation. Suppose that system i receives all the

resources it needs (θi). We simply have to determine how to optimally distribute the

remaining k − θi resources between systems 0 and j. The left hand side of (3) represents

the expected marginal benefit of assigning resources to system j conditional on those

resources being desirable, that is, on system j having needs exceeding the cap yj(θi).

The right hand side of (3) represents the marginal benefit of assigning them to system 0.

Optimal distribution of k− θi equates both marginal benefits. Moreover, it can be shown

that y′j(θi) ∈ (−1, 0): a one-unit increase in the needs of (and therefore in the resources

allocated to) system i reduces the cap on system j by less than one unit, thereby reducing

also the resources allocated to system 0.

Overall, (3) describes the cap on system j when system i receives its needs. Suppose

now that both systems are constrained and denote by k1 and k2 the optimal amount of

resources allocated to systems 1 and 2 in that case, with k0 = k− k1− k2. Whenever they

are all positive, the values (k0, k1, k2) solve the following system of equations

α1E
[
u′1

(
k1 − θ1

) ∣∣∣ θ1 ≥ k1

]
= α2E

[
u′2

(
k2 − θ2

) ∣∣∣ θ2 ≥ k2

]
= α0u

′
0

(
k0 − θ0

)
, (4)

which has the same interpretation as before: the marginal benefit of allocating resources

to system 0 equals the expected marginal benefit of allocating resources to either of the

constrained systems 1 and 2. Note from (3) and (4) that y1(k2) = k1 and y2(k1) = k2.

With these premises in mind, we are in a position to characterize M, the mechanism

that solves problem P.

Proposition 1 (Characterization) The optimal mechanism M is characterized by the

following caps x̄∗1(θ2) and x̄∗2(θ1):

x̄∗1(θ2) =

{
y1(θ2) if θ2 < k2

k1 if θ2 ≥ k2
and x̄∗2(θ1) =

{
y2(θ1) if θ1 < k1

k2 if θ1 ≥ k1
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Let us first understand what mechanism M implies for the equilibrium allocations to

systems 1 and 2 which, from now on, are denoted by x∗1(θ1, θ2) and x∗2(θ1, θ2). According to

Proposition 1, system j has a guaranteed minimum level of resources kj . This means that,

if its needs are θj ≤ kj , they are fully satisfied and the resulting performance is flawless.

If, on the other hand, its needs are θj > kj , then system j receives extra resources only

if system i is satiated. The amount by which the resources to j are increased depends on

the marginal benefit of allocating them to 0 vs. j, as expressed in (3). Notice that this

allocation rule implies that when the needs of both 1 and 2 are above k1 and k2, none of

them receives resources above those levels. Finally, the resources that are not allocated to

systems 1 and 2 (if any) go to system 0.

Figure 1 provides a graphical representation of the resources (x∗1(θ1, θ2), x∗2(θ1, θ2))

allocated to systems 1 and 2 under mechanism M for every pair of needs (θ1, θ2). The

dotted and bold lines represent the optimal caps on systems 1 and 2 as a function of the

needs of systems 2 and 1 respectively. The resulting final allocations are such that, in

the lower left quadrant (systems 1 and 2 have low needs), both systems receive all the

resources they need. In the upper right quadrant (systems 1 and 2 have high needs),

both systems receive fixed amounts. In the remaining two quadrants, the system with low

needs is unconstrained and the system with high needs is constrained by an amount that

depends negatively on the needs of the other system. The remaining resources x∗0(θ1, θ2) =

k − x∗1(θ1, θ2)− x∗2(θ1, θ2) are then allocated to system 0.

The intuition for the optimality of mechanism M is as follows. First, CES has for

each system i only one instrument at its disposal– the allocation xi– which dramatically

limits its scope for intervention.18 As established in Lemma 1, the best CES can do is

to set a cap x̄i on each system i. Because system i’s performance is (weakly) increasing

in the resources obtained, imposing a cap that depends non-trivially on i’s own report

cannot be incentive compatible. By contrast, as the needs of system j increase, so does

the opportunity cost of granting resources to system i. Therefore, the cap on system i

must be non-increasing in the report made by system j about its own needs. After a

certain threshold, however, system j is also capped and higher reports do not translate

into higher resources. At that point, the opportunity cost of allocating resources to system

i becomes constant and so does the cap on i. Combining these properties naturally leads

to the mechanism described in Proposition 1.

18Trading-off two instruments as in the traditional mechanism design literature is not possible in our
setting due to the absence of monetary transfers.
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Figure 1. Allocation (x∗1, x
∗
2) as a function of needs (θ1, θ2) in the optimal mechanism M.

x̄∗2(θ1)

x̄∗1(θ2)

From a technical viewpoint, we can establish a connection between our mechanism and

a prominent class of mechanisms studied in the social choice literature in a different but

related context (with single peaked rather than weakly-increasing preferences). Moulin

(2000) introduced the notion of “priority mechanism”, a rule that consists first in ranking

agents lexicographically and then sequentially allocating resources according to their needs

and the pre-specified priority order. The author characterizes some axiomatic properties

of this simple allocation rule. Interestingly, Proposition 1 shows that the mechanism

which maximizes social welfare (the sum of expected utilities of all agents) has a priority-

type format: if θi < ki then give priority to system i and divide the remaining resources

optimally between systems j and 0, and if both θ1 > k1 and θ2 > k2 then give a fixed

allocation kl to each system l.

The optimal mechanism M has an interesting property that we describe below.

Corollary 1 Under full information, the individual will always under-perform in the cog-

nitive tasks. Under incomplete information, the individual will perform flawlessly in simple

cognitive tasks and severely under-perform in difficult cognitive tasks.

Recall that under complete information, a system with positive needs always receives

fewer resources than desired. This implies that the individual always under-performs in

tasks 1 and 2. Under incomplete information, on the contrary, the individual performs

cognitive tasks flawlessly as long as they are simple enough. The result is illustrated in
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Figure 2. It represents the final allocation of resources to system i under complete in-

formation (dotted line) and incomplete information (full line) as a function of its needs

θi and for a given announcement θj by system j. As the needs of system i increase, the

allocation obtained by that system under M is fully responsive up to a level (dx∗i /dθi = 1)

and non-responsive afterwards (dx∗i /dθi = 0). This is to be contrasted with the full in-

formation case in which the allocation is always below optimal and strictly increases with

the needs. The result has two immediate implications. First, only under incomplete in-

formation a multi-tasking individual may perform both cognitive tasks flawlessly. Second,

performance in a cognitive task under complete information exceeds performance under

incomplete information if and only if needs are above a certain threshold, that is, the

cognitive task is sufficiently difficult.

-

6

�
�
�
�
�
�
�

θi

x∗i (θi, θj)

xFi (θi, θj)

x̄∗i (θj)

Figure 2. Allocations xFi and x∗i as a function of the needs θi.

4.3 Comparative statics

We now study how the optimal allocation rule is affected by changes in the resources

available and the relative importance of the performance of systems. Consider the optimal

mechanism M given the parameters (α0, α1, α2, θ0, k). We have the following result.

Proposition 2 (Comparative statics) The resources x∗l (θ1, θ2) allocated to system l

(weakly) increase if αl or k increase or if α−l decreases. Also, x∗i (θ1, θ2) decreases and

x∗0(θ1, θ2) increases if θ0 increases.

The comparative statics follow a general resource monotonicity principle which can be

summarized as “abundance is shared and relative importance is compensated.” If a system

becomes more valuable for CES (due, for example, to an increase in the marginal cost of

under-performance), it receives more resources at the expense of both the other systems.
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Conversely, if new resources become available (k increases), then all systems benefit from

this surplus.19

Changes in α0 are interesting. If shortages in the amount granted to the motor skill

task become less and less costly (α0 decreases), systems 1 and 2 receive more resources

(yi(θj) increases for all θj). They also become less sensitive to each other’s demands

(|y′i(θj)| decreases for all θj), because higher needs of system j come more at the expense

of system 0 and less at the expense of system i. Eventually, x∗0 hits the non-negativity

constraint. Once this occurs, system 0 receives no resources and the problem reduces to

allocating a fixed amount k between systems 1 and 2.

The optimal mechanism M and the comparative statics can be illustrated with the

following stylized analytical example.20

Example 1 (Uniform-Quadratic) Suppose that performance is quadratic for all xl ≤ θl
and needs in the cognitive tasks are uniformly distributed: ul(a) = −a2 and θi ∼ U[0, θi].

To reduce the number of parameters, let θ0 = k. Using (3)-(4), we get:

yi(θj) =
αiθi

αi + 2α0
− 2α0

αi + 2α0
θj and ki =

αiαjθi + 2α0αiθi − 2α0αjθj
αiαj + 2α0αi + 2α0αj

where the slope of the cap function is constant: y′i(θj) = − 2α0
αi+2α0

∈ (−1, 0).

One may want to give a quantitative assessment of the efficiency of our optimal second-

best mechanism M relative to some alternatives. To this end, we compare the performance

of M in Example 1 to the first-best full information mechanism and to two third-best

simpler mechanisms: one where system i receives priority and the remaining resources

are optimally distributed between 0 and j, and another where system 0 receives priority

(given Assumption 2, in this last case no resources are left to systems 1 or 2).

Example 2 (Performance Comparison) Suppose that αl = 1 for all l, ul(a) = −a2,

θi ∼ U[0, 1], and θ0 − k ≡ r ∈ [0, 1/2]. Figure 3 represents the expected utility of CES

as a function of r under four different mechanisms: (i) First-best (Full Information), (ii)

Second-best (Mechanism M), (iii) Priority to i, and (iv) Priority to 0.21

19This comparative statics is consistent with experiments in which subjects have to exercise self control
and make effortful choices after drinking lemonade containing either glucose or a substitute (Masicampo
and Baumeister (2008)). Performance was significantly higher for subjects who drank glucose suggesting
the positive effect of extra resources in the bloodstream.

20The algebraic details in Examples 1 and 2 are omitted for brevity but are available from the authors.
21We restrict attention to r ≤ 1/2 so that system 0 is not overwhelmingly important (for instance it

is trivial that when r = 1 Full Information, Mechanism M and Priority to 0 perform identically simply
because all three mechanisms allocate all the resources to system 0, the system with greatest needs).
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Figure 3. CES utility under full information (light thick line), mechanism M (dashed
line), Priority to i (dotted line) and Priority to 0 (dark thin line).

When r = 0, M performs substantially better than other simple mechanisms: utility

under M is about 20% lower than under first-best whereas utility under priority to i or

priority to 0 is about 60% lower than under first-best. As r increases, the inefficiency of

Priority to i increases whereas the inefficiency of Priority to 0 decreases relative to M

simply because, other things being equal, higher needs of system 0 (i.e., higher r) implies

that more resources should be granted to that system.

4.4 Implementation

The solution described in Proposition 1 represents a normative upper bound on the ef-

ficiency of the resource allocation problem. A direct revelation mechanism where each

system ‘communicates’ its needs truthfully given the ‘commitment’ by CES to split re-

sources following a pre-determined rule is nothing but an abstract formalization of the

problem. Indeed, although systems may not be able to literally send messages to CES,

they can signal their needs through the usage of the processing resources made available to

them. As discussed in Appendix A1, the direct revelation and signal-through-consumption

mechanisms can be formally equivalent. However, that approach is still fairly abstract.

The purpose of this section is to determine whether the efficient allocation rule can be

reached using a simple and biologically plausible process. Assume that the tasks must

be completed between time 0 and time k, and only one unit of processing resources is

delivered at each instant. We may think of processing resources as metabolic resources

that can be used to efficiently transmit a signal.
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Proposition 3 (Implementation) M can be implemented with the following mechanism

M′:

(i) CES sends resources to system l at a constant rate rl = kl/k.

(ii) As long as i and j consume resources, the flow rates (r0, r1, r2) are maintained. If

i stops consuming at time t̃, then resources are redirected to j and 0 at revised rates νj
and 1− νj, such that rj t̃+ νj(k − t̃) = yj(rit̃).

(iii) If both i and j stop consuming, all the remaining resources are redirected to 0.

Mechanism M′ follows the biological principles highlighted in the introduction. CES

sends resources simultaneously to the systems in charge of performing tasks. The systems

deplete the resources, and depletion is (correctly) interpreted by CES as a signal that

more resources are needed. The process is dynamic but extremely fast. If one system

stops consuming, no further resources are sent to it. Mechanism M′ is extraordinarily

simple for systems: it just requires them to grab any incoming resources until they are

satiated. It means in particular that, for the optimal mechanism to work, each system’s

knowledge about the existence and needs of other systems is virtually nil. In fact, systems

do not even need to know their own needs at any point in time, only whether an extra unit

of resources is valuable or not. On the other hand, the mechanism requires a certain degree

of sophistication by CES, which must be able to select different flow rates for different

systems and be ready to redirect resources when some needs are satiated. We conjecture

that the activity measured in the LPFC in the dual-task experiments reviewed in section

2.1 (D’Esposito et al., 1995; Szameitat et al., 2002, and others) captures this extra top-

down involvement of CES in the coordination and allocation of “attentional resources.”

However, this is somewhat speculative since the precise implications of increased levels of

blood oxygenation in LPFC are not known with certainty.

5 Task inertia and performance improvements

In this section we study the sequential allocation of resources. To this purpose consider the

following extension of the basic model. Suppose that CES has imperfect knowledge of the

distribution F i(·) from which the needs of system i ∈ {1, 2} are drawn. More precisely,

there is an underlying state si ∈ Si = [si, si] that determines the distribution of needs

for system i. For example, suppose the individual performs an auditory comprehension

task which is often (though not always) complex. Then, the auditory system will often

(though, again, not always) require substantial resources. This is formally captured by an

underlying state si that places high probability on auditory needs being large.
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We order the states from highest likelihood of small needs to highest likelihood of large

needs, and assume that a (strict) Monotone Likelihood Ratio Property (MLRP) holds.22

Assumption 3 (MLRP)
d

dθi

(
f isi(θi|si)
f i(θi|si)

)
> 0 ∀ i, θi, si.

According to this assumption, needs increase (in a stochastic sense) as we move towards

a higher state. Stated differently, the state si is a parameter that captures how complex

the task is likely to be, and therefore how important the needs are likely to be. When the

individual performs tasks only once, the problem is identical to the one studied previously,

as CES is not interested in states per se but only as a way to identify more accurately the

needs of systems. To see this, suppose the state si is drawn from a known distribution

P i(si) with density pi(si), and that states are independent across systems (pi(si|sj) =

pi(si) for all sj).
23 The probability that system i has needs θi is:

gi(θi) =

∫ si

si

f i(θi|si)pi(si)dsi (5)

We can then perform the very same analysis as before where f i(·) is replaced by gi(·).

The problem becomes more interesting when the individual performs the same set of

tasks in consecutive periods. We assume that si remains constant over time. At each date

t and conditional on the state si, the needs of system i are drawn independently from

F i(θi|si). The past realization of needs then conveys information about the state, which

itself informs about the distribution of present needs. Formally and applying Bayes rule,

the probability that the needs of system i at date t are θti given that its needs at date t−1

were θt−1
i is:

gi(θti |θt−1
i ) =

∫ si

si

f i(θti |si)pi(si|θt−1
i )dsi =

∫ si

si

f i(θti |si)f i(θt−1
i |si)p

i(si)dsi∫ si

si

f i(θt−1
i |si)p

i(si)dsi

(6)

The following lemma is a key step for our subsequent analysis.

Lemma 2 Under Assumption 3,
d

dθti

giθt−1
i

(θti | θ
t−1
i )

gi(θti |θ
t−1
i )

 > 0 ∀ i, θti , θt−1
i .

22Subscripts in c.d.f. or density functions denote partial derivatives with respect to that argument.
23If states are not independent, then θi and θj are correlated. The optimal mechanism must then exploit

this correlation, as it is well known in the mechanism design literature.
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According to Lemma 2, MLRP begets MLRP : if the individual experiences high needs

at some date, it means that the state is likely to be high (in an MLRP sense), and therefore

that needs are likely to be high also in the future (again, in an MLRP sense).

The dynamic allocation of needs in the framework developed above has some new

features. Suppose that, at the end of each date t, CES learns what the needs of each

system were at that date. This occurs for example if the performance Πi(·) of system i is

observed after system i has performed the task: the individual receives feedback about its

performance and this is interpreted by CES. Then, the needs reported by systems at some

date affect current allocations but not future allocations. Hence, independently of whether

system i is myopic (most likely) or forward-looking (least likely), it will ‘communicate’ its

needs in order to optimize exclusively its present allocation. The mechanism M developed

in Proposition 1 as well as the implementation procedure M′ described in Proposition 3

remain optimal at each date t, where f i(θi) is simply replaced by gi(θti | θ
t−1
i ) updated

using the posterior pi(si | θt−1
i ). This mechanism, however, has new interesting properties.

Proposition 4 (Task inertia) The resources x∗it(θ
t
1, θ

t
2) allocated to system i at date t

(weakly) increase if θt−1
i increases or if θt−1

j decreases.

The idea is simple. If CES realizes that the needs of system i in the previous period

were high, it concludes that state si is likely to be high which, other things being equal,

shifts the updated distribution of system i’s future needs towards high values. As a result,

it becomes optimal to grant more resources to system i in the current period, that is, to

set a higher cap. Given our resource monotonicity property, a more generous allocation

to system i comes necessarily at the expense of both systems 0 and j.

Using Proposition 1, we can then compare two models. In the first one, CES knows at

the beginning of each date t the needs (θt1, θ
t
2) of systems 1 and 2 (the ‘full information’ case,

as in section 3). In the second one, CES does not know at the beginning of date t the needs

(θt1, θ
t
2) of systems 1 and 2 (the ‘incomplete information’ case, as in section 4). In both

models, however, needs are revealed to CES at the end of date t. Also, since the underlying

state is unknown, there is learning over time about si in both models, and therefore about

the distribution f i(θi|si). These two models yield two different implications for observed

behavior that are summarized below.

Corollary 2 In a dynamic multi-task setting, the expected future performance at any time

t′ > t evaluated at time t is constant under full information while it improves over time

under incomplete information.
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With full information, the resource allocation rule of CES does not depend on his

assessment of the state. Still, higher states lead to (stochastically) higher needs and there-

fore lower expected performance whereas lower states lead to lower needs and therefore

higher expected performance. From the perspective of date t, however, learning about

the state may go in either direction, hence the constant expected performance under full

information. With incomplete information, a new effect appears. Over time, CES learns

about si through the realization of θi. This reduces the information asymmetry between

CES and system i, which results in an improved expected performance. The conclusion is

in line with experimental evidence. Subjects tend to adapt their behavior and obtain bet-

ter outcomes in the presence of feedback about performance even when there is nothing to

‘learn’ about the characteristics of the task. In a sense, the result rationalizes performance

improvements purely through practice or task repetition.

Proposition 4 has also an immediate but important implication regarding the existence

or non-existence of a link between the past needs of a system and its current allocation.

Corollary 3 Under full information, the allocation rule at each date t depends exclusively

on the present needs. Under asymmetric information it depends on the present needs and

also on the history of needs.

With full information, present needs are a sufficient statistic to determine the optimal

allocation. It then follows that learning about si allows CES to better predict future

performance but does not vary the way it distributes resources at future dates. In other

words, the allocation rule at any time is, conditional on the current needs, independent of

the history of needs. With incomplete information, however, the optimal allocation mech-

anism depends on the distribution from which needs are drawn. Learning about si thus

leads to a history-dependent allocation rule: higher past needs of system i reflects a higher

likelihood of present needs inducing a more favorable treatment by CES through a higher

consumption cap. This more favorable treatment translates into a higher performance of

system i at the expense of systems j and 0.

Task inertia and the resulting history-dependent allocation and performance is a par-

ticularly interesting result in the light of the recent neuroscience research. Indeed, suppose

that for the first few periods the task performed by system i is more complex than the

task performed by system j. Not surprisingly, resources are primarily directed to system i.

Suppose now that, at some point, there is a reversion in complexity. There is substantial

fMRI evidence of residual activity right after the change in the previously crucial but now

unimportant system i. Conversely too few resources are allocated to the previously unim-

portant but now crucial system j following the reversion in complexity. This misallocation
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vanishes after a few periods. Behaviorally, it translates into a short-term lowered perfor-

mance (slower response and more mistakes) in the task for which system j is responsible

(Wylie and Allport (2000), Monsell (2003), Yeung et al. (2006)). Neuroscientists argue

that this phenomenon is due to what they call a “task inertia” or a “task switching cost.”

However, the evidence on the existence of such switching cost is not accompanied by an

understanding of where it comes from and why it vanishes rapidly. In order to generate

this effect in a model with full information, we would need to impose some ad-hoc cost of

adaptation. Perhaps more satisfactorily, our model shows that inertia arises naturally un-

der incomplete information. The model thus proposes an explanation for why adaptation

to a changing environment may take a few iterations, and therefore offers a foundation for

theories that take this result as an assumption.

Last, the biologically plausible mechanism M′ discussed in Proposition 3 has a natural

implication in the multi-period framework.

Corollary 4 In a dynamic multi-task setting, mechanism M′ predicts that the initial rate

of resources sent to system i at date t increases when θt−1
i increases. If, in equilibrium,

the needs of system i are satiated (θti < x̄∗it(θj)), the individual completes that task faster

the higher the past needs.

It suffices to apply Proposition 3 to each period. Interestingly, the rates ri and νi will

change over time as a function of past needs. It comes immediately from Proposition 4

that the initial rates allocated to task i at date t increase if θt−1
i increases and if θt−1

j

decreases: more resources are sent if the task is expected to be more difficult given the

feedback obtained. This also implies that the task should be completed faster at date t

as processing resources are available more rapidly, providing another testable implication

of the theory.

6 The architecture of brain systems: integration vs. spe-
cialization

So far, we have assumed that each system performs exactly one task. In reality, systems

are responsible for multiple tasks and tasks require the coordination of multiple systems.

There are numerous reasons for such an organization of the brain. In this section, we focus

on one specific aspect that builds on the core premise of our theory: restricted channels of

communication. More precisely, we study from a purely informational viewpoint the trade-

off between integrating the two cognitive tasks into one system vs. specializing systems

into performing one cognitive task each.
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Specialization corresponds to the case already analyzed in section 4, where each cogni-

tive task is performed by a different system with private knowledge of needs. Integration

is modeled as follows. There is one system, denoted by I, which encompasses systems 1

and 2: it knows the needs θ1 and θ2, undertakes tasks 1 and 2, and cares about the sum

of performances in those tasks. Formally:

ΠI(x1, x2; θ1, θ2) ≡ Π1(x1; θ1) + Π2(x2; θ2)

We impose the following assumptions. First, under integration, CES can only choose

which resources are allocated to system I and which are allocated to system 0. System

I, who knows the relative needs in tasks 1 and 2, then decides how to split its resources

between tasks 1 and 2. Second, for analytic tractability we restrict attention to quadratic

performance functions:

u0(x0 − θ0) = −(1− γ)(x0 − θ0)2 and ui(xi − θi) = −γ (xi − θi)2

where γ ∈ [0, 1] captures the importance of the cognitive tasks relative to the motor skill

task in the overall performance function. As we will develop below, the main objective

of this section is to determine which brain architecture is more efficient as a function of

this parameter. Finally, we also focus on the case where θ1 + θ2 = k. We impose this

assumption to be in the interesting situation where integration and specialization yield

identical performance if either γ = 0 or γ = 1. In the former case, only the motor skill

task matters and optimality requires x0 = k. In the latter case, only the cognitive tasks

matter and first best can be achieved by setting x1 = θ1 and x2 = θ2.24 Proposition 5

discusses which brain architecture dominates when γ ∈ (0, 1).

Proposition 5 (Brain architecture) Assume θ1+θ2 = k, f1(θ1)f2(θ2) > 0 and quadratic

performance functions. There exist γ and γ with 0 < γ ≤ γ < 1 such that, from the view-

point of CES, integration dominates specialization for all γ ∈ (0, γ) and specialization

dominates integration for all γ ∈ (γ, 1).

From a purely informational perspective, integration has both benefits and costs. On

the one hand, system I knows θ1 and θ2, so it can compute the relative value of allocating

resources to task 1 vs. task 2. Moreover, there is congruence with the interests of CES on

this relative value. Therefore, for a given amount of resources allocated to the cognitive

24If we assume θ1 + θ2 > k, then integration dominates specialization when γ = 1 (and therefore also
when γ → 1) but for ad-hoc reasons. Indeed, when γ = 1, all the resources are directed to tasks 1 and 2.
Since resources are sometimes scarce (θ1 + θ2 > k for some (θ1, θ2)), it is efficient to have system I (which
by assumption knows the relative needs in those tasks) deciding how to split k between the two.
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tasks, the integrated system I performs a split between the two which is optimal from the

viewpoint of CES. On the other hand, system I does not care about the performance in task

0, therefore all the resources granted to I are allocated to task 1 or task 2 independently

of the opportunity cost of allocating them to system 0. This contrasts with the separation

case where the marginal benefits of granting resources to each system are jointly taken

into consideration when determining the optimal caps of systems 1 and 2.

According to Proposition 5, specialization is preferred when the importance of the

cognitive tasks is high relative to the motor skill task (γ > γ) and integration is preferred

when the importance of the cognitive tasks is low relative to the motor skill task (γ < γ).25

Intuitively, when the cognitive tasks are important, the majority of resources are allocated

to tasks 1 and 2. It then becomes relatively more valuable to get extra information about

the needs in each of these tasks in order to determine how much to grant to task 0. This

is obtained through specialization. Conversely, when the motor skill task is very valuable,

most of the resources are allocated to system 0 anyway. At the margin, it is then important

to optimize the (few) resources granted to the cognitive tasks, and this is achieved through

integration.

Figure 4 depicts the equilibrium allocation as a function of needs under integration

(bold line) assuming k̂ resources are optimally allocated to system I. The allocation under

specialization is the same as mechanism M in Figure 1, and it is superimposed in the graph

(dotted lines). Two differences between the integration and specialization mechanisms

deserve emphasis. First, under integration the amount of resources consumed in task i are

θi if θ1 + θ2 ≤ k̂ and x̂i(θ1, θ2) < θi if θ1 + θ2 > k̂. It means that, in equilibrium, the needs

in either none or both cognitive tasks are constrained. This contrasts with specialization

which has four regions so that, for some parameters, the needs of one and only one task

are constrained. Second and by construction, under integration the cap is set on total

resources for the cognitive tasks, so lower needs in task i do not result in spillovers for

task 0 unless system j is satiated. Again, this contrasts with specialization, where lower

needs by system i always result in more resources for both system j and system 0.

An immediate implication of Proposition 5 with intuitive appeal is summarized below.

Corollary 5 Different cognitive tasks should be performed by different systems if cognitive

tasks are crucial for CES and by the same system if they are not.

25We show for a parametric example (θi ∼ U [0, 1] and α1 = α2) that γ = γ. Unfortunately, the
uniqueness of the cutoff does not extend to other cases so, in general, we cannot determine what happens
when γ ∈ [γ, γ].
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Figure 4. Optimal allocation under integration (I) and specialization (M).

Integration
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(θ1, θ2)

(x̂1(θ1, θ2), x̂2(θ1, θ2))

7 Discussion and conclusions

Incorporating choice imperfections in the decisions of agents has become central to behav-

ioral economics. Observed behaviors or “outputs” such as empirical evidence, experimental

data or sometimes mere introspection have been the main source of inspiration for mod-

els of bounded rationality. The premise of the present research is that “inputs” such as

physiological constraints in our ability to perceive events, process information, and select

between options should also be used as building blocks for new theories of decision making.

This paper follows this alternative route. It determines the constrained optimal allocation

of resources to brain systems when multiple tasks are performed simultaneously. It shows

that the optimal mechanism takes a resource cap structure and that it can be implemented

using a simple and biologically plausible procedure. Some implications of the theory are

discussed, most notably the inverse relation between task difficulty and performance, the

endogenous emergence of task inertia and the conditions for the optimality of task in-

tegration. A natural next step would be to test this theory in a controlled laboratory

setting. Given the existing research by Baumeister and co-authors on self-control and

multi-tasking, this area seems a good candidate for such test. For example, our theory

predicts that subjects who find it more difficult to exert self-control should perform worse

in unrelated tasks.

Although our theory is motivated by the neurobiology of the brain, the model can also
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be applied to more traditional areas of economics. For example, it can be straightforwardly

reinterpreted as a manager in a firm whose objective is to allocate scarce funds between

self-interested units (research, production, marketing, etc.) given private information of

needs.26 It can also capture the decision problem of colluding firms who decide how to

split the market without using side transfers that would provide compromising evidence

of their illegal activities. Other natural applications include provision of private goods to

a group of individuals and lobbying activities in political contexts.

As a final point, economists often express reservations about the idea that brain systems

may have competing goals. In particular, wouldn’t it be more efficient if every subpart

pursued the common good? There are evolutionary, physiological and empirical arguments

against a common interest approach. First, the well-known neural Darwinism (Edelman,

1987) and neuronal selectionism (Changeux, 1985) theories provide models where neuronal

groups within the brain compete with each other for stimulus and reward resources.27

Second, and paradoxically, a cooperative approach would require a greater degree of brain

connectivity and sophistication. Indeed, each system would have to be able either to

‘communicate’ its needs back to the central decision-maker or to perform a non-trivial

marginal analysis and give up worthy resources whenever these are more valuable to other

systems. Instead, the physiological evidence reviewed in section 2.1 points towards a

lack of information flowing from systems to CES (possibly due to the scarcity of the

energetically costly neural connections) and a simplistic ‘deplete-until-satiation’ behavior

of neurons in the decision systems. These two features are consistent with our mechanism

M′. Third, some of the empirical regularities discussed in the paper (for example, the

possibility of flawless behavior and the prevalence of task inertia) arise naturally in our

non-cooperative model with private information but would not be present in a model with

common objectives. In any case, we believe that system competition provides at the very

least a plausible alternative to the cooperative ‘team theoretic’ approach.

26As mentioned in section 2.2, the literature on organizations has studied related questions. However,
to our knowledge a problem with two actions and two agents with private information and where the
organization cannot price resources has not been addressed before. The implications for inertia in organi-
zations and the trade-off integration vs. specialization of units within an organization are also potentially
important for the theory of the internal organization of the firm.

27Under this approach, biological evolution encourages fitness of the neuronal system, rather than fitness
at a higher level (the individual) or a lower level (the gene). See Tooby and Cosmides (1992) for an
evolutionary theory of internal conflicts in changing environments. See also Livnat and Pippenger (2006)
and Bisin and Iantchev (2010) for models highlighting the evolutionary advantages of having modules with
non-congruent objectives.

One could also build evolutionary theories where Nature shapes the performance functions of systems (as
in Robson (2001) or Rayo and Robson (2013) for example) to internalize the opportunity cost of resources.
Whether such approach would result in selfish, fully cooperative or partially cooperative systems is an
open question of considerable interest.
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Appendix

A1. Interpreting the direct revelation mechanism

Suppose there are two stages. In stage τ ∈ {1, 2}, CES allocates a local budget to each

system (yτ1 , y
τ
2 ). A budget is a function of past “messages”, which in our case corresponds

to past “consumptions”. We denote by mτ
i the consumption of system i in stage τ .

In stage 2, the resources needed by system i are r2
i and its allocation is y2

i (m
1
1,m

1
2).

It is optimal to consume exactly what is needed or, if this is not possible, to deplete the

local budget:

m2
i

(
y2
i (m

1
1,m

1
2), r2

i

)
= min

{
y2
i (m

1
1,m

1
2), r2

i

}
In stage 1, the resources needed by system i are θi and its allocation is y1

i . Consumption

cannot exceed the allocation (m1
i 6 y1

i ). If θi < y1
i , then it is (weakly) optimal to consume

m1
i = θi. If θi > y1

i , system i chooses m1
i and the ex-post utility is:

αi ui
(
m1
i + min

{
y2
i (m

1
1,m

2
1), θi −m1

i

}
− θi

)
where stage 2 needs are replaced by total needs minus stage 1 consumption. We look for

a solution in dominant strategies, that is:

αi ui
(
m1
i + min

{
y2
i (m

1
i ,m

1
j ), θi −m1

i

}
− θi

)
> αi ui

(
m̃1
i + min

{
y2
i (m̃

1
i ,m

1
j ), θi − m̃1

i

}
− θi

)
for all m1

i 6 y1
i and m̃1

i 6 y1
i , yielding a solution m1∗

i (θi, y
1
i ). At equilibrium, sys-

tem i consumes m1∗
i (θi, y

1
i ) in stage 1. He receives y2

i (m
1∗
i (θi, y

1
i ),m

1∗
j (θj , y

1
j )) in stage

2 and consumes m2∗
i (θi, θj , y

1
i , y

1
j ) = min

{
y2
i (m

1∗
i (θi, y

1
i ),m

1∗
j (θj , y

1
j )), θi − y1

i

}
. Total

consumption is m1∗
i (θi, y

1
i ) + m2∗

i (θi, θj , y
1
i , y

1
j ) which, by construction, is less than y1

i +

y2
i (m

1∗
i (θi, y

1
i ),m

1∗
j (θj , y

1
j )).

Let xi(θi, θj , y
1
i , y

1
j ) = m1∗

i (θi, y
1
i ) +m2∗

i (θi, θj , y
1
i , y

1
j ). Again by construction, for all θj

and for all y1
i , y

1
j , we have:

αi ui
(
xi(θi, θj , y

1
i , y

1
j )− θi

)
> αi ui

(
xi(θ

′
i, θj , y

1
i , y

1
j )− θi

)
which means that the two-stage mechanism where stage 2 budget depends on stage 1

consumption is formally equivalent to a direct mechanism where, for any initial local

budgets (y1
1, y

1
2), each system i is asked to report its total needs θi and receives a final

allocation xi that is divided among the two stages. The mechanism is direct and incentive

compatible in dominant strategies. Moreover, for any such mechanisms with initial budgets

(y1
1, y

1
2), there exists an equivalent mechanism with no budget in stage 1. That mechanism

is itself equivalent to a static mechanism in which all resources are allocated in stage 2.

We can thus restrict to such mechanisms.
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A2. Proof of Lemmas and Propositions

A. Proof of Lemma 1

We proceed in two steps. We first show that any mechanism that solves CES problem must

be ex-post efficient. We then show that, given Assumption 2, the class of strategy-proof,

ex-post efficient mechanisms is contained in M.

Consider an arbitrary mechanism D,

D (θ1, θ2) = (x0 (θ1, θ2) , x1 (θ1, θ2) , x2 (θ1, θ2)),

which is feasible, strategy-proof but not ex-post efficient. We can then construct a feasible,

strategy-proof mechanism D′ that increases the CES performance, implying that D does

not solve the problem of CES. It follows from Assumption 2 that a feasible mechanism is

not ex-post efficient if and only if for some i ∈ {1, 2} there exists a profile (θ1, θ2) such

that xi (θ1, θ2) > θi, that is system i obtains excess resources. In particular, feasibility

and Assumption 2 imply that system 0 can never obtain excess resources. Denote by Ψi

the set of states in which system i ∈ {1, 2} obtains resources above needs, and define the

mechanism D′ that follows D except for (θ1, θ2) ∈ Ψi, i ∈ {1, 2} in which case we have:

D′ (θ1, θ2) =


x′0 (θ1, θ2) = x0 (θ1, θ2) + (xi (θ1, θ2)− θi) ,
x′i (θ1, θ2) = θi,
x′j (θ1, θ2) = xj (θ1, θ2) ,

if (θ1, θ2) ∈ Ψi.

That is, D′ assigns to system 0 the excess resources of other systems. It is clear

that the expected utility of CES increases if the equilibrium allocation rule follows D′

instead of D. It remains to show that D′ is strategy-proof. First, for (θ1, θ2) ∈ Ψi,

system i achieves the same (maximum) performance with the new mechanism D′ as with

the previous mechanism D. Second, the allocation to system i does not become more

desirable to any other type θ′i. Third, system j’s allocation does not change in Ψi. These

three observations imply that if D is strategy-proof, so is D′.

We next show that the set of allocations induced by system i when system j reports

θj , Xi(θj) = {xi (θi, θj) : θi ∈ Θi} for any strategy-proof, ex-post efficient mechanism must

be an interval. Strategy-proofness then implies a “cap structure” as in (2). Suppose,

by way of contradiction, that for some θj , Xi(θj) is not an interval. This implies that

there exist two elements xi,x
′
i ∈ Xi(θj), xi < x′i, with (xi, x

′
i) ∩ Xi(θj) = ∅. Let θi =

inf {θi ∈ Θi : xi (θi, θj) = x′i} be the minimum type that induces allocation x′i. First, ex-

post efficiency implies that θi ≥ x′i. Second, letting θ′′i ∈ (xi, x
′
i), incentive compatibility

requires that xi (θ′′i , θj) = x′i, implying that θi ≤ θ′′i thus violating θi ≥ x′i. Having reached

a contradiction it thus follows that Xi(θj) is an interval. 2
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B. Proof of Proposition 1

The proof of Proposition 1 will be based on Lemmas 3, 4 and 5.

Lemma 3 Define a �i −priority mechanism to be a mechanism where CES assigns re-

sources θi to system i. The optimal strategy-proof �i −priority mechanism Pi allocates

resources according to:

xi(θ1, θ2) = min {θi, k} ,
xj(θ1, θ2) = min {θj , yj(θi)} ,
x0(θ1, θ2) = k − xi(θ1, θ2)− xj(θ1, θ2),

where yj(θi) is continuous, non increasing and at each point of differentiability we have

y′j(θi) ∈ [−1, 0]. If 0 < yj(θi) < k − θi then yj(θi) is the unique solution to:

αjE
[
u′j (yj(θi)− θj) | θj ≥ yj(θi)

]
= α0u

′
0 (k − θi − yj(θi)− θ0) ,

and y′j(θi) ∈ (−1, 0).

Proof. Under an �i −priority mechanism CES assigns resources θi to system i as long

as it does not violate the resource constraint θi ≤ k. Therefore xi (θ1, θ2) = min{θi, k}.
We first restrict attention to �i −priority mechanisms that set a cap on the resources

allocated to system j, i.e. xj (θ1, θ2) = min{θj , yj(θi)}, and we characterize the mechanism

Pi with an optimal cap yj(θi). We then show that Pi is optimal in the general class of

strategy-proof �i −priority mechanisms.

(a) Optimal cap yj(θi).

The expected performance when system i announces θi and resources k′ = k − θi are

distributed between systems 0 and j by imposing a resource cap yj(θi) on system j is

(omitting the dependence of yj(θi) on θi to avoid clutter)

Jj(yj) =

∫ θj

yj

αjuj (yj − θj) dF j(θj) +

∫
Θj

α0u0 (x0 (θj)− θ0) dF j(θj),

where x0 (θj) = k′ − θj if θj ≤ yj and x0 (θj) = k′ − yj if θj > yj . The optimal cap yj
solves

max Jj(yj) s.t. 0 ≤ yj ≤ k′. (7)

We first show that Jj is quasiconcave in [0, k′]. Define the function Hj as

Hj(yj) = E
[
u′j (yj − θj) | θj ≥ yj

]
. (8)
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By differentiating Jj we have

J ′j(yj) =
(
1− F j (yj)

) (
αjE

[
u′j (yj − θj) | θj ≥ yj

]
− α0u

′
0

(
k′ − yj − θ0

))
=

=
(
1− F j (yj)

) (
αjHj(yj)− α0u

′
0

(
k′ − yj − θ0

))
. (9)

We now establish that αjHj(yj) − α0u
′
0 (k′ − yj − θ0) is non-increasing in yj by showing

that H ′j(yj) ≤ 0. Concavity of u0 would then complete the proof of this claim. To ease

notation define

Λ(yj) =

∫ θj

yj

(
u′j (yj − θj) +

u′′j (yj − θj)
h(yj)

)
dF j(θj),

so that totally differentiating (8) we have

H ′j(yj) =
Λ(yj)h(yj)

1− F j(yj)
.

We now show that Λ(yj) ≤ 0. As u′′j ≤ 0, Assumption 1 implies that h(θj) ≥ h(yj), for

θj ≥ yj so that
u′′j (yj − θj)

h(yj)
≤
u′′j (yj − θj)

h(θj)
for θj ≥ yj .

Integration by parts provides the following identity∫ θj

yj

u′j (yj − θj) dF j(θj) = −
∫ θj

yj

u′′j (yj − θj) (1− F j(θj))dθj . (10)

Therefore

Λ(yj) ≤
∫ θj

yj

u′j (yj − θj) dF j(θj) +

∫ θj

yj

u′′j (yj − θj)
h(θj)

dF j(θj) =

= −
∫ θj

yj

u′′j (yj − θj) (1− F j(θj))dθj +

∫ θj

yj

u′′j (yj − θj) (1− F j(θj))dθj = 0.

As Λ(yj) ≤ 0 then H ′j(yj) ≤ 0 implying that J ′j(yj) changes sign at most once (from

positive to negative) and thus Jj is quasiconcave.

With these insights we can now solve (7). First, for yj = 0 to be a solution of (7) it

is necessary and sufficient that J ′j(0) ≤ 0 which is equivalent to αjHj(0) ≤ α0u
′
0 (k′ − θ0).

For yj = k′ to be a solution of (7) it is necessary and sufficient that αjHj(k
′) ≥ α0u

′
0 (−θ0).

In all other cases the maximizer of (7) is the unique solution to J ′j(yj) = 0 thus satisfying:

αjHj(yj) = α0u
′
0

(
k′ − yj − θ0

)
.
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Given the uniqueness of maximizer, the Maximum Theorem establishes the continuity

of yj(θi). Summarizing, the optimal threshold yj (θi) under Pi satisfies:
yj (θi) = 0 if αjHj(0) ≤ α0u

′
0 (k − θi − θ0) ,

yj (θi) = k − θi if αjHj(k − θi) ≥ α0u
′
0 (−θ0) ,

αjHj(yj) = α0u
′
0 (k − θi − yj − θ0) otherwise.

(11)

At any θi at which yj (θ′i) = k− θ′i for θ′i in a neighborhood of θi we have y′j (θi) = −1,

while at any point θi at which yj (θ′i) = 0 for θ′i in a neighborhood of θi we have y′j (θi) = 0.

We can implicitly differentiate (11) for any interior solution to find

y′j (θi) = − α0u
′′
0 (k′ − yj − θ0)

α0u′′0 (k′ − yj − θ0) + αjH ′j(yj)
∈ [−1, 0).

In particular, if h′j(θj) > 0 then H ′j(yj) < 0 and y′j (θj) ∈ (−1, 0).

(b) Optimality of resource-cap priority mechanisms.

We prove the optimality of (11) in the class of strategy-proof �i −priority mechanisms

following the same proof strategy as in Lemma 1: we show that, under an optimal mech-

anism, the set of resources awarded to system j is indeed an interval for any θi. To reach

a contradiction, suppose that this set is not an interval. That is, letting xij(θj) be the

resources awarded to system j when system i announces θi, then there exist θ′j < θ′′j such

that xij(θj) /∈ (θ′j , θ
′′
j ) with xij(θ

′′
j ) = θ′′j . As system j’s preferences are monotone, system j

would never demand resources θ′j when its needs exceed it, i.e. when θj > θ′j . If resources

(θ′j , θ
′′
j ) are ruled out, system j would obtain xij(θj) ≥ θ′′j when θj > θ′j . We now show that

allowing all points in (θ′j , θ
′′
j ) increases the CES performance. By awarding system j the

amount θj when θj ∈ (θ′j , θ
′′
j ), the CES can allocate the remaining xij(θj)−θj ≥ θ′′j −θj > 0

to system 0, thus increasing its performance. Therefore, the mechanism that rules outs

(θ′j , θ
′′
j ) cannot be optimal. This implies that the optimal mechanism is continuous. It is

also immediate that the CES would never impose a binding lower bound on the resources

granted to system j, as eliminating such lower bound would free resources to be allocated

to system 0. Therefore the optimal mechanism Pi in the class of �i −priority mechanisms

is given by (11). 2

Lemma 4 Let Hj(yj) = E
[
u′j (yj − θj) | θj ≥ yj

]
. The thresholds y2(θ1) and y1(θ2) in

the priority mechanisms P1 and P2 defined in Lemma 3 intersect if and only if there exist

θ̃1 and θ̃2 such that the following two conditions are satisfied:

α1H1(θ̃1)− α2H2(0) ≥ 0 with α2H2(0) = α0u
′
0

(
k − θ̃1 − θ0

)
,

α2H2(θ̃2)− α1H1(0) ≥ 0 with α1H1(0) = α0u
′
0

(
k − θ̃2 − θ0

)
.

(12)

32

 at U
niv of Southern C

alifornia on A
pril 13, 2014

http://restud.oxfordjournals.org/
D

ow
nloaded from

 

http://restud.oxfordjournals.org/
http://restud.oxfordjournals.org/


Furthermore, if h1(θ1) and h2(θ2) are strictly increasing and yi(θj) < k − θj then y2(θ1)

and y1(θ2) intersect at a single point.

Proof. We first show that if at least one of the conditions in (12) is not satisfied then

y1 (θ2) and y2 (θ1) never intersect. The functions y1(θ2) − y−1
2 (θ2) and y2(θ1) − y−1

1 (θ1)

are weakly increasing for θi ∈ [yi(0), yi(θj)] ∩ [0, θi], since at any point of differentiability

d(yi(θj) − y−1
j (θj))/dθj = y′i(θj) − (1/y′j(y

−1
j (θj))) ≥ 0.28 Therefore, a necessary and

sufficient condition for y1 (θ2) and y2 (θ1) to never intersect is that either y1 (0)−y−1
2 (0) > 0

or y2 (0)− y−1
1 (0) > 0.

Consider first the case y1(0) − y−1
2 (0) > 0. In other words, under a �1 −priority

mechanism P1 there is a θ1 such that whenever system 1 requests at least θ1 system 2

obtains zero resources (y2(θ1) = 0) and θ1 < y1(0) ≤ k. By (11), the minimum value θ̃1

at which y2(θ̃1) = 0 satisfies α2H2(0) = α0u
′
0(k − θ̃1 − θ0). The condition y1(0) > θ̃1 can

be restated as requiring that the marginal effect on overall performance of increasing the

threshold to system 1 at θ̃1 must be positive, which from Lemma 3 implies:

α1H1(θ̃1)− α0u
′
0

(
k − θ̃1 − θ0

)
≥ 0.

Substituting the value of θ̃1 this requires:

α1H1(θ̃1)− α2H2(0) ≥ 0 with α2H2(0) = α0u
′
0

(
k − θ̃1 − θ0

)
.

Following a similar analysis, y2(0)− y−1
1 (0) > 0 if and only if:

α2H2(θ̃2)− α1H1(0) ≥ 0 with α1H1(0) = α0u
′
0

(
k − θ̃2 − θ0

)
.

Second, suppose that y1(θ2) < k − θ2 and y2 (θ1) < k − θ1, i.e. both yi(θj) are interior

solutions of (11) and suppose that the hazard rates are strictly increasing. We now show

that, given (12) is satisfied, then y2(θ1)−y−1
1 (θ1) = 0 has a unique solution. From h′2(θ2) >

0, h′1(θ1) > 0 and Lemma 3, it follows that 0 > y′2(θ1) > −1 and d(y−1
1 (θ1))/dθ1 < −1.

Taking both implications together, we have that the difference y2(θ1)− y−1
1 (θ1) is strictly

increasing in θ1 and thus changes sign at most once. Therefore if the curves y1 (θ2) and

y2 (θ1) intersect at an interior point, then they intersect only once. 2

Lemma 5 Let Θ+
i =

{
θi : θj > x∗j (θi) ⇒ θi > x∗i (θj)

}
be the set of values θi such that

under an optimal mechanism M and for any (θi, θj) in which system j receives less than

θj, system i receives less than θi. If θ1 and θ2 are independent, then x∗j (θi) is constant in

Θ+
i .

28It can be readily shown that any other point must entail a binding constraint yi(θj) = k− θj in which
case the functions yi(θj)− y−1

j (θj) are continuous and weakly increasing.
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Proof. Let θi ∈ Θ+
i . Then the optimal cap on system j, x∗j (θi), must satisfy the first order

condition: ∫ θj

x∗j

[
αju

′
j

(
x∗j − θj

)
− α0u

′
0

(
k − θ0 − (x∗j + xi (θi, θj)

)]
dF j(θj) = 0.

By definition, if θj ≥ x∗j system i receives less than its needs when θi ∈ Θ+
i . Therefore its

allocation xi (θi, θj) is independent of θi, xi (θi, θj) = x∗i (θj) . Then the FOC is independent

of θi and thus for all θi ∈ Θ+
i , the optimum x∗j is independent of θi. 2

Using Lemmas 3, 4 and 5, we proceed to the characterization of the optimal mechanism

M.

Proof of Proposition 1: The first-order condition for x∗i (θj) when system j reports θj
is ∫ θj

x∗i

αiu
′
i (x∗i − θi) dF i(θi) =

∫ θi

x∗i

α0u
′
0 (k − θ0 − (x∗i + xj (θi, θj)) dF

i(θi). (13)

From the proof of Lemma 3 the optimal cap on a system must be lower if other

systems are given more resources. This observation allows us to establish the following

facts regarding the allocation rule under an optimal mechanism M : (i) system i obtains at

least the same resources as under the priority mechanism Pj , and (ii) system i’s resources

never exceed those obtained under Pj when system j demands zero resources. Indeed,

since xj (θi, θj) = min {θj , xj (θi)} ≤ θj and the right hand side of (13) is increasing in

xj (θi, θj), we then have:

yi (θj) ≤ x∗i (θj) ≤ yi (0) . (14)

We consider first the case in which y1 (θ2) and y2 (θ1) intersect at an interior point

(Lemma 4). We characterize M by proving a series of properties implied by optimality.

(i) The sets Θ+
i are non-empty.

Suppose that θ̄i > yi(0). From Lemma 4 we have that y2(0) < y−1
1 (0), that is the maximum

resources granted to system 2 in a priority mechanism P1 (which occurs when system 1

demands zero) are less than the needs of system 2 that would lead system 1 to obtain

zero resources under P2. From (14), y2(0) represents an upper bound on the resources

that system 2 would obtain under M. Therefore, for every θ2 ≥ y2(0) we have θ2 ∈ Θ+
2 as

system 2 is necessarily constrained. Lemma 4 also implies that y1(0) < y−1
2 (0). Therefore,

for every θ1 ≥ y1(0) we have θ1 ∈ Θ+
1 .

(ii) Mechanism M behaves like a priority mechanism Pi for θi ≤ ki
From Lemma 5, define ki = x∗i (θj) to be the constant cap for θj ∈ Θ+

j . Then ki represents

the minimum resources guaranteed to system i in the sense that x∗i (θj) ≥ ki for all θj .

This is easy to see as xj (θi, θj) is monotone in θj so that the left hand side of (13) increases
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in θj . Therefore ki = x∗i
(
θ̄j
)
≤ minx∗i

(
θ̄j
)
. This implies that for θi ≤ ki system i always

obtains its resource needs xi (θi, θj) = θi. Therefore, for θi ≤ ki the optimality condition

(13) is satisfied by x∗j (θi) = yj (θi).

(iii) Optimal guaranteed resources satisfy kj = yj (ki).

Define k∗i as the point of intersection of y1 (θ2) and y2 (θ1), i.e. k∗j = yj (k∗i ) . We now show

that ki = k∗i .

First, system 1 obtains at least resources k1 when θ1 > k1. This implies that the

resources obtained by system 2 cannot exceed those obtained under a priority mechanism

P1 when system 1 demands resources k1, i.e. x2 (θ1, θ2) ≤ x∗2 (θ1) ≤ y2 (k1) for θ1 >

k1. Therefore the optimal k1 that satisfies (13) is (weakly) higher than the cap under a

priority mechanism P2 when system 2 demanded resources y2 (k1) , i.e. k1 ≥ y1 (y2 (k1)) ,

or y2(k1)− y−1
1 (k1) ≥ 0. By Lemma 4, y2(θ1)− y−1

1 (θ1) is an increasing function implying

that

k1 ≥ k∗1. (15)

Analogously we obtain that k2 ≥ k∗2.

Second, system 2 always obtains at least resources k2 when θ2 ≥ k2. Therefore the

optimal k1 that satisfies (13) cannot exceed the cap under a priority mechanism P2 when

system 2 demands resources k2 , i.e.

k1 ≤ y1 (k2) . (16)

Combining (15) and (16) and k2 ≥ k∗2 we have

k1 ≤ y1 (k2) ≤ y1 (k∗2) = k∗1 ≤ k1.

A similar reasoning yields k2 = k∗2.

Finally, we also consider the case in which y1 (θ2) and y2 (θ1) never intersect. If yi (0)−
y−1
j (0) > 0 then by Lemma 4 we have yj(θi) < y−1

i (θi) for all θi which implies that

ki = yi(0). Therefore M is a priority mechanism Pi for θi ≤ yi(0) while it implements the

allocation xi (θ1, θ2) = ki and xj (θ1, θ2) = 0 for θi > yi (0). 2

C. Proof of Proposition 2

The thresholds yi(θj) are defined in (11). An increase in αi to α′i > αi relaxes the conditions

αiHi(0) > α0u
′
0 (k − θi − θ0) and αiHi(k−θj) ≥ α0u

′
0 (−θ0) implying that if yi(θj)(αi) ≥ 0

then yi(θj)(α
′
i) ≥ 0, and if yi(θj)(αi) = k − θj then yi(θj)(α

′
j) = k − θj . If yi(θj)(αi)

satisfies αiHi(yi(θj)) = α0u
′
0 (k − θj − yi(θj)− θ0), then implicitly differentiating we have

that ∂yi(θj)/∂αi > 0. In summary, if α′i > αi then yi (θj) (α′i) ≥ yi (θj) (αi) for all θj ∈
[θj , θj ]. Since yj(θi) does not depend on αi, we have x̄∗i (θj)(α

′
i) ≥ x̄∗i (θj)(αi), x̄∗j (θi)(α′i) ≤

x̄∗j (θi)(αi), and ki(α
′
i) ≥ ki(αi), kj(α′i) ≤ kj(αi).
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We now consider the comparative statics on α0, θ0 and k. Following a similar argument

as before, we can show that if α′0 > α0 or θ′0 > θ0 then optimal caps satisfy yi(θj)(α
′
0) ≤

yi(θj)(α0) and yi(θj)(θ
′
0) ≤ yi(θj)(θ0) for θj ∈ [0, θj ]. Now, let Hi(θi) as given by (8).

If ki(α0) > 0 and ki(θ0) > 0, from Proposition 1 we have that the guaranteed levels ki
satisfy:

α1H1(k1) = α2H2(k2) if k1 + k2 = k, (17)

α1H1(k1) = α2H2(k2) = α0u
′
0 (k − k1 − k2 − θ0) if k1 + k2 < k. (18)

We now show that both guaranteed levels are reduced for any of the following changes:

(i) α′0 > α0, (ii) θ′0 > θ0, or (iii) k′ < k. First consider the case (17). Then for any

α′0 > α0 or θ′0 > θ0 such that we still have k1 (α′0) + k2 (α′0) = k or k1 (θ′0) + k2 (θ′0) = k

the guaranteed levels do not change as (17) does not depend on α0 or θ0. Next suppose

that k1 + k2 < k. Then by the implicit function theorem applied to (18):

∂ki
∂α0

= −
αjH

′
j(kj)u

′′
0(k̃ − θ0)

∆
and

∂ki
∂θ0

= −∂ki
∂k

= −
α0αjH

′
j(kj)u

′′
0(k̃ − θ0)

∆
,

where k̃ = k1 + k2 and ∆ = α1α2H
′
1(k1)H ′2(k2) + α0u

′′
0(k̃ − θ0)

(∑
j=1,2 αjH

′
j(kj)

)
> 0.

Therefore ∂ki/∂α0 < 0, ∂ki/∂k > 0 and ∂ki/∂θ0 < 0. 2

D. Proof of Proposition 3

Trivial to check once we note that if system i stops consuming at t̃, then it implies that

rit̃ = θi. 2

E. Proof of Lemma 2

The condition in the statement of the lemma is equivalent to log-supermodularity of

gi(θti |θ
t−1
i ), which requires that for each θ̃ti > θti and θ̃t−1

i > θt−1
i we must have

gi(θ̃ti |θ̃t−1
i )gi(θti |θt−1

i )− gi(θ̃ti |θt−1
i )gi(θti |θ̃t−1

i ) ≥ 0.

where gi(θti |θ
t−1
i ) is given by (6). Therefore, we simply need

h(θti , θ
t−1
i ) =

∫ si

si

f i(θti |si)f i(θt−1
i |si)p

i(si)dsi

to be log-supermodular to guarantee that gi(θti |θ
t−1
i ) is log-supermodular. A theorem

of Karlin (1968) establishes that, for a measure µ, whenever i(x, s) and j(y, s) are log-

supermodular, then k(x, y) =
∫
S i(x, s)j(y, s)dµ(s) is also log-supermodular. Since, by

Assumption 3, f i(θti |si) is log-supermodular for any t, this completes the proof. 2
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F. Proof of Proposition 4

Given Proposition 1 and Lemma 2 it suffices to show that if x∗i (θj)(G1) is the opti-

mal resource cap when θ1 is distributed according to G1, then for G′1 �LR G1 we have

x∗1(θ2)(G′1) ≥ x∗1(θ2)(G1) and x∗2(θ1)(G′1) ≤ x∗2(θ1)(G1).

If G′1 �LR G1, then the hazard rates satisfy hG′1(θ1) ≤ hG1(θ1) and
1−G′1(θ1)
1−G1(θ1) increases

in θ1. Since (10) implies that

EG′1

[
u′1 (y1 − θ1) | θ1 ≥ y1

]
= −

∫ θ1

y1

u′′1 (y1 − θ1)
1−G1(θ1)

1−G1(y1)
dθ1,

it follows from (10) that

EG′1

[
u′1 (y1 − θ1) | θ1 ≥ y1

]
> EG1

[
u′1 (y1 − θ1) | θ1 ≥ y1

]
(19)

From (19) and the definition of y1(θ2) in (11) we have: (i) if y1(θ2)(G1) = 0 then

y1(θ2)(G′1) ≥ 0; (ii) if y1(θ2)(G1) = k− θ2 then y1(θ2)(G′1) = k− θ2; and (iii) if y1(θ2)(G1)

satisfies

α1H1(y1(θ2)(G1)) = α0u
′
0 (k − θ2 − y1(θ2)(G1)− θ0) ,

then y1(θ2)(G1) < y1(θ2)(G′1). In summary, if G′1 �LR G1 then y1(θ2)(G′1) ≥ y1(θ2)(G1)

for all θ2 ∈ [θ2, θ2]. Since y2(θ1)(G′1) = y2(θ1)(G1), we can immediately conclude that

(i) k1(G′1) > k1(G), k2(G′1) < k2(G1) and (ii) x∗1(θ2)(G′1) ≥ x∗1(θ2)(G1), x∗2(θ1)(G′1) ≤
x∗2(θ1)(G1). 2

G. Proof of Corollary 2

Let It denote the history of needs prior to time t and let Et [·] = E [· | It] be the conditional

expectation given history It. First, the full information optimal allocation rule at any time

t′ is independent of the state si given the needs (θt
′

1 , θ
t′
2 ). Therefore, the law of iterated

expectations implies that for any t′ > t

Et

[
Πt′
CES

]
= Et

[
E
[
Πt′
CES | It′

]]
= Et

[
Πt
CES

]
.

This follows as knowing It′ does not change the allocation rule given that the CES will first

observe (θt
′

1 , θ
t′
2 ). Second, improved expected performance under incomplete information

follows from two observations. First, the constraints on dominant strategy incentive com-

patibility do not depend on the common beliefs on the distribution of needs. Thus, every

mechanism that is feasible and DSIC remains so after the CES updates his belief over the

state si. Second, as the set of direct incentive compatible mechanisms remains unchanged
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with the CES’ beliefs, the CES cannot do worse with additional information on si if sys-

tems act myopically. Formally, letting D be the set of feasible and DSIC mechanisms we

have that for t′′ > t′ > t,

Et

[
E
[
Πt′′
CES | It′′

] ]
= Et

[
max
D

E
[
Πt′′
CES | It′′

]]
≥ Et

[
E
[
Πt′′
CES (D′)| It′′

]]
= Et

[
Πt′
CES

]
.

where D′ is the optimal mechanism given history It′ . Therefore the expected performance

at t′′ > t′ exceeds the expected performance at t′. 2

H. Proof of Corollary 3

In the text.

I. Proof of Corollary 4

In the text.

J. Proof of Proposition 5

The proof of Proposition 5 is divided into two parts. First, Lemma 6 provides a char-

acterization of the optimal mechanism I under integration of tasks 1 and 2 by system I.

We then proceed to prove Proposition 5. To streamline the exposition in Lemma 6, let

α′0 = (1− γ)α0 and α′i = γαi for i = 1, 2.

Lemma 6 The optimal integration mechanism I is such that CES sets a fixed cap k̂ on

the total resources allocated to system I. The optimal cap k̂ satisfies:

α′1α
′
2

α′1 + α′2

(
E[θ1 + θ2 | θ1 + θ2 ≥ k̂]− k̂

)
= α′0

(
θ0 − [k − k̂]

)
(20)

Proof. For fixed resources k′ (≥ 0) and needs (θ1, θ2), system I will choose to distribute

them according to

1. If k′ ≥ maxi

{
θi −

α′j
α′i
θj

}
then

{
x1(k′; θ1, θ2) = θ1 − α′2(θ1 + θ2 − k′)/(α′1+α′2)
x2(k′; θ1, θ2) = θ2 − α′1(θ1 + θ2 − k′)/(α′1 + α′2)

,

2. If k′ < θ1 −
α′2
α′1
θ2 then

{
x1(k′; θ1, θ2) = k′

x2(k′; θ1, θ2) = 0
,

3. If k′ < θ2 −
α′1
α′2
θ1 then

{
x1(k′; θ1, θ2) = 0
x2(k′; θ1, θ2) = k′

,

(21)

and the ex-post performance of system I is

ΠI(θ1, θ2, k
′) = − α′1α

′
2

α′1+α′2
(min {k′ − θ1 − θ2, 0})2 if k′ ≥ maxi{θi −

α′j
α′i
θj},

ΠI(θ1, θ2, k
′) = −α′1 (min {k′ − θ1, 0})2 − α′2θ2

2 if k′ < θ1 −
α′2
α′1
θ2,

ΠI(θ1, θ2, k
′) = −α′1θ2

1 − α′2 (min {k′ − θ2, 0})2 if k′ < θ2 −
α′1
α′2
θ1.
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The fact that resources allocated to each task must be non-negative accounts for the

allocation rules whenever k′ < maxi
{
θi −

α′j
α′i
θj
}

. In fact, non-negativity implies that

system I cannot “borrow” negative resources from tasks with lower needs and redirect

them to tasks with higher needs. This insight provides an upper bound on the ex-post

performance of system I given optimal distribution rules (21):

ΠI(θ1, θ2, k
′) ≤ − α′1α

′
2

α′1+α′2

(
θ1 + θ2 − k′

)2
. (22)

Clearly, for any k′ and needs (θ1, θ2), expected overall performance is

ΠCES = ΠI(θ1, θ2, k
′)− α′0(min

{(
k − k′ − θ0

)
, 0
}

)2.

To study the optimal mechanism under integration we consider a related optimization

problem (problem P ′) where the performances of CES and system I are given by:

Π′I(θ1, θ2, k
′) = − α′1α

′
2

α′1+α′2

(
θ1 + θ2 − k′

)2
, (23)

Π′CES = min

{
−α′0

(
θ0 − (k − k′)

)2
, 0

}
+ Π′I(θ1, θ2, k

′).

We then show that the optimal mechanism for problem P ′ is also the optimal mecha-

nism for our original specification.

(i) Optimal Mechanism for Problem P ′.
The overall performance from the viewpoint of CES in (23) can be written as

Π′CES = −
(
α′1α

′
2

α′1+α′2
+ α0

)(
k′ − k′CES (θ1, θ2)

)2− α′0α
′
1α
′
2

α′1α
′
2 + α′1α

′
0 + α′2α

′
0

(k − θ1 − θ2 − θ0)2 ,

where

k′CES (θ1, θ2) = max

{
α′1α

′
2

α′1α
′
2 + α′1α

′
0 + α′2α

′
0

(θ1 + θ2)− α′0 (α′1+α′2)

α′1α
′
2 + α′1α

′
0 + α′2α

′
0

(θ0 − k), 0

}
,

is the optimal total amount of resources to system I if the CES knew (θ1, θ2). We first

consider the optimal mechanism of the form k (z) = min{z, k̂}, and then argue that this

is the optimal mechanism for problem P ′.

(ii) Optimal cap k̂.

First, with z = θ1 + θ2 we have

G(z) =

∫
Θ1

∫ θ2=z−θ1

θ2

f (θ1, θ2) dθ1dθ2 and g(z) =

∫
Θ1

f1 (θ1) f2 (z − θ1) dθ1
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which follows from independence of θ1 and θ2. The distribution function G(z) is the

convolution of two distributions with an increasing hazard rate, and therefore has also an

increasing hazard rate (Barlow et al 1963). Moreover, the expected performance of CES

with a resource allocation rule kI (z) = min{z, k′} is

JICES
(
k′
)

=

∫ z=k′

0
−α′0 (k − θ0 − z)2 dG(z)

+

∫ z

z=k′

(
−α′0

(
k − θ0 − k′

)2 − α′1α
′
2

α′1+α′2

(
z − k′

)2)
dG(z),

where z = θ1 + θ2. The optimal cap k̂ satisfies the first order condition

2

∫ z

z=k̂

(
α′0

(
k − θ0 − k̂

)
+

α′1α
′
2

α′1+α′2

(
z − k̂

))
dG(z) = 0,

which translates into

α′1α
′
2

α′1+α′2

(
E
[
z
∣∣∣z ≥ k̂]− k̂) = α′0

(
θ0 −

(
k − k̂

))
. (24)

The second order condition is satisfied as z has an increasing hazard rate. Note also

that there would be no gain to CES when solving problem P ′ from banning intermediate

decisions. Indeed suppose that CES offers a mechanism k′(z) of the form

k′(z) =

{
z if z ≤ k1

min{max{z, k2}, k̂} if z > k1
,

where resources k′ ∈ (k1, k2) are not available to system I. If system I’s needs are

z ∈ (k1, k2) as his preferences are monotone it would demand at least k2. The CES would

then be better off allowing all resources in (k1, k2), thus reducing the resources allocated

to system I (without changing its performance) and thus improving the performance of

system 0. Therefore ruling out intermediate resources is not optimal.

(iii) Optimal Mechanism under integration.

First we observe that under a mechanism of the form k (z) = min{z, k̂} the allocation

for each task whenever z ≤ k̂ is the same for a system I with preferences as in (23) or

in our original setup. Moreover, the fact that the solution to problem P ′ is of the form

k′ (z) = min{z, k̂} implies that it is never optimal to “rule out” intermediate resources in

the original problem. Thus the optimal mechanism in the original problem is of the form

k (z) = min{z, k̂} with k̂ as in (24).

Proof of Proposition 5: Denote by JICES(γ) the maximum expected performance under

integration and by JMCES(γ) the maximum expected performance under specialization.
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(a) Relative performance of Integration vs. Specialization as γ → 1.

(a-i) Performance under integration.

Given that z = θ̄1 + θ̄2 ≤ k, Lemma 6 establishes that for γ close to 1 the optimal

integration mechanism I sets a cap on resources k̂ where

k̂ =
γ/α0

γ/α0 + (1− γ)( α1α2
α1+α2

)
E
[
z
∣∣∣z ≥ k̂]− (1− γ)( α1α2

α1+α2
)

γ/α0 + (1− γ)( α1α2
α1+α2

)
(θ0 − k) . (25)

Since θ0 > k it follows that k̂ < z whenever γ < 1 and k̂ → z as γ → 1. To study the

performance of integration as γ → 1 we first determine the rate at which the k̂ increases.

To this end, we make two preliminary observations. First, given the bounded support of

θ1 and θ2, the p.d.f. of g(z) satisfies

g(z) =

∫
Θ1

f1 (θ1) f2
(
θ̄1 − θ1 + θ̄2

)
dθ1 = 0,

as f2
(
θ̄1 − θ1 + θ̄2

)
= 0 for θ1 < θ̄1. Second,

g′−(z) = −f1
(
θ̄1

)
f2
(
θ̄2

)
< 0.

In order to compute ∂k̂/∂γ|γ=1− as an application of the implicit function theorem to

(25) we first compute dE
[
z − k̂

∣∣∣z ≥ k̂] /dk̂|γ=1−

dE
[
z − k̂

∣∣∣ z ≥ k̂]
dk̂

∣∣∣∣∣∣
γ=1−

= −1 + lim
γ=1−

g(k̂)

1−G(k̂)
E
[
z − k̂

∣∣∣z ≥ k̂] .
Defining the function N(k) =

∫ z
k (z − k)dG(z) =

∫ z
k (1−G(z))dz , we have

g(k)

1−G(k)
E [z − k |z ≥ k ] =

N ′′(k)N(k)

(−N ′(k))2
.

The (leftward) Taylor series expansion of N(k) around z is given by N(k) = g′(z)
3! (k−z)3 +

O((k − z)4) for k ≤ z. With this expression we readily obtain

lim
γ→1−

g(k̂)

1−G(k̂)
E
[
z − k̂

∣∣∣z ≥ k̂] = lim
γ→1−

N ′′(k̂)N(k̂)

(−N ′(k̂))2
=

g′(z)
3!

g′(z)
1!(

g′(z)
2!

)2 =
2

3
.

Thus

dE
[
z − k̂

∣∣∣z ≥ k̂]
dk̂

∣∣∣∣∣∣
γ=1−

= −1 + lim
γ=1−

g(k̂)

1−G(k̂)
E
[
z − k̂

∣∣∣z ≥ k̂] = −1

3
,
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and by the implicit function theorem

∂k̂

∂γ

∣∣∣∣∣
γ=1−

= −α0

( α1α2
α1+α2

) (z + θ0 − k)

dE[z−k̂|z≥k̂ ]
dk̂

∣∣∣∣
γ=1−

= 3α0

(
α1α2

α1 + α2

)
(z + θ0 − k) > 0. (26)

(a-ii) Performance under specialization.

To study the case of specialization we will consider the mechanism MD defined by

xMD
1 (θ1, θ2) = min{θ1, y1(θ2)},
xMD

2 (θ1, θ1) = min{θ2, y2(θ1)},
xMD

0 (θ1, θ2) = k − xMD
1 (θ1, θ2)− xMD

2 (θ1, θ2) ,

where

yi(θj) =

{
k̃i if θj ≤ k̂ − θi
k̂ − θj if θj ≥ k̂ − θi

,

and

k̃i = θ̄i − (1− γ)
α0

αi

(
γ + δi

2αi

) (θ̄i + θ0 − k
)
, (27)

where δi is a strictly positive parameter. The mechanism MD always satisfies the resource

constraint (given that θ̄1 + θ̄2 ≤ k) and is dominant strategy incentive compatible. Clearly

MD is not necessarily optimal under specialization, i.e. JMCES(γ) ≥ JMD
CES(γ). Nevertheless

MD is simpler to analyze than the optimal mechanism under specialization and will suffice

to show that specialization dominates integration as γ → 1.

(a-iii) Comparison integration-specialization.

Define the sets

Ai =
{

(θ1, θ2) : θi ≥ k̃i, θj ≤ k̂ − θi
}
, i ∈ {1, 2} ,

B =
{

(θ1, θ2) : θ1 + θ2 ≥ k̂
}
.

As the allocation rule under the mechanisms I and MD coincides outside the sets Ai and

B we only need to estimate the difference JMD
CES(γ)− JICES(γ) in each of these three sets.

First, for (θ1, θ2) ∈ Ai (i) the mechanism MD restricts the allocation to system i to

k̃i while it grants its needs to system j and (ii) both tasks obtain their needs under the
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mechanism I. We thus have(
JMD
CES(γ)− JICES(γ)

)∣∣∣
(θ1,θ2)∈Ai

=

∫
Ai

(
−α0 (1− γ)

(
k − k̃i − θj − θ0

)2
− γαi

(
k̃i − θi

)2
+ (1− γ)α0 (k − θi − θj − θ0)2

)
dF 1dF 2

= 2

∫
Ai

∫ θi

k̃i

(
α0 (1− γ) (s+ θj + θ0 − k)− γαi

(
s− k̃i

))
dsdF 1dF 2

≥ 2

∫
Ai

∫ θi

k̃i

(
α0 (1− γ) (s+ θ0 − k)− γαi

(
s− k̃i

))
dsdF 1dF 2,

which leads to the estimate

2

∫
Ai

∫ θi

k̃i

(
α0 (1− γ) (s+ θ0 − k)− γαi

(
s− k̃i

))
dsdF 1dF 2 ≥ δi

(
θ̄i − k̃i

)
E
[
θi − k̃i|Ai

]
Pr [Ai] ,

where Pr [Ai] = (1− F i(k̃i))F j(k̂ − θi) and the last inequality follows from the definition

of k̃i and that, for 1 > γ > α0
α0+αi

,

α0 (1− γ) (s+ θ0 − k)−γαi
(
s− k̃i

)
≥ α0 (1− γ)

(
θ̄i + θ0 − k

)
−γαi

(
θ̄i − k̃i

)
=
(
θ̄i − k̃i

) δi
2
> 0.

Second, for (θ1, θ2) ∈ B both tasks obtain less than their needs both under MD and

I.29 Thus(
JMD
CES(γ)− JICES(γ)

)∣∣∣
(θ1,θ2)∈B

= −
∫
B

(∑2

i=1
γαi

(
k̂ − θ1 − θ2

)2
− γ α1α2

α1 + α2

(
θ1 + θ2 − k̂

)2
)
dF 1dF 2

= −γ
(
θ̄1 + θ̄2 − k̂

)2
(
α1 + α1 −

α1α1

α1 + α2

)
Pr [B] .

29This can be seen by observing that mechanism MD restricts the resources to both tasks only if
mechanism I restricts total resources to system I. This follows by the observation that k̃1 + k̃2 > k̂ for γ
close to 1. Indeed, since

∂k̃i
∂γ

∣∣∣∣∣
γ=1

=
α0(θ̄i + θ0 − k)

αi
(

1 + δi
2αi

) > 0,

comparing (26) and (27) we have that

∑2

i=1

∂k̃i
∂γ

∣∣∣∣∣
γ=1

=
∑2

i=1

α0(θ̄i + θ0 − k)

αi
(

1 + δi
2αi

) <
∑2

i=1

α0(θ̄i + θ0 − k)

αi
<
∑2

i=1

α0(z + θ0 − k)

αi
=

1

3

∂k̂

∂γ

∣∣∣∣∣
γ=1−

Therefore ∂
∂γ

(∑2
i=1 k̃i − k̂

)∣∣∣
γ=1

< 0 implying that for γ in a neighborhood of γ = 1, k̃1 + k̃2 > k̂.
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Using both estimates we obtain the lower bound

JMD
CES(γ)− JICES(γ) ≥

(∑2

i=1
(1− F i(k̃i)) + Pr [B]

)(
θ̄1 + θ̄2 − k̂

)2
(C1(γ)− C2(γ)) ,

(28)

where

C1(γ) =

∑2
i=1 δi

(
θ̄i − k̃i

)
E
[
θi − k̃i|Ai

]
Pr [Ai](∑2

i=1(1− F i(k̃i)) + Pr [B]
)(

θ̄1 + θ̄2 − k̂
)2 ,

C2(γ) =

(
α1 + α1 −

α1α1

α1 + α2

)
γ Pr [B]∑2

i=1(1− F i(k̃i)) + Pr [B]
.

The following limits follow by application of L’Hôpital’s rule

lim
γ=1−

θ̄i − k̃i
θ̄1 + θ̄2 − k̂

=
− dk̃i

dγ

∣∣∣
γ=1−

− dk̂
dγ

∣∣∣
γ=1−

> 0, lim
γ=1−

θ̄i − E [θi|Ai]
θ̄1 + θ̄2 − k̂

=
− dE[θi|Ai]

dγ

∣∣∣
γ=1−

− dk̂
dγ

∣∣∣
γ=1−

> 0,

lim
γ=1−

Pr [B]∑2
i=1(1− F i(k̃i)) + Pr [B]

=
g
(
θ̄1 + θ̄2

)
dk̂
dγ

∣∣∣
γ=1−

−
∑2

i=1 f
i(θ̄i)

dk̃i
dγ

∣∣∣
γ=1−

− g
(
θ̄1 + θ̄2

)
dk̂
dγ

∣∣∣
γ=1−

= 0,

lim
γ=1−

∑2
i=1 Pr [Ai]∑2

i=1(1− F i(k̃i)) + Pr [B]
= 1.

which imply that

lim
γ→1−

C1(γ) > 0 and lim
γ→1−

C2(γ) = 0.

Therefore there exists a neighborhood M of γ = 1 where γ > maxi

[
α0

α0+αi

]
and JMCES(γ) ≥

JMD
CES(γ) > JICES(γ) for γ ∈M,γ 6= 1.

(b) Relative performance of Integration vs. Specialization as γ → 0.

Given θ0 > k, when γ = 0 the CES assigns all resources to system 0 both under aggregation

and specialization implying JICES(0) = JMCES(0). By the Milgrom-Segal Envelope Theorem

(Milgrom and Segal, 2002) we have

∂JICES(γ)

∂γ

∣∣∣∣
γ=0+

= − α1α2

α1 + α2
E
[
(θ1 + θ2)2

]
,

∂JMCES(γ)

∂γ

∣∣∣∣
γ=0+

= −α1E
[
θ2

1

]
− α2E

[
θ2

2

]
.

Then

∂
(
JICES(γ)− JMCES(γ)

)
∂γ

∣∣∣∣∣
γ=0+

=
1

α1 + α2
E
[
(α1θ1 − α2θ2)2

]
> 0.
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where the strict inequality follows from independence of θ1 and θ2. Therefore, there exists

a neighborhood N of γ = 0 where JICES(γ) > JMCES(γ) for γ ∈ N, γ 6= 0.

K. Proof of Corollary 5

In the text.
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