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Abstract I analyze optimal auction design in the presence of linear type-dependent
negative externalities. I characterize the properties of the optimal mechanism when
externalities are “strongly decreasing” and “increasing” in the agent’s valuation and
I discuss its implementation with sealed-bid auctions. Interestingly, bidding strate-
gies are not necessarily increasing in valuations, and the optimal mechanism can be
implemented by setting a price ceiling instead of a reserve price.

Keywords Auctions · Type-dependent externalities · Mechanism design

JEL Classification D44 · D62

1 Introduction

Consider the following examples: two pharmaceutical laboratories competing for the
acquisition of a license, two firms competing for the delegation of a procurement
contract, and two employees competing for a promotion. In all these cases, the
ex-post utility of the “winner” is higher and that of the “loser” is lower than in the
status quo scenario. The laboratory without the license will face a tougher competi-
tion on the product market. The firm without the contract will suffer a reputation loss
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360 I. Brocas

relative to its competitor. The employee without the promotion will have to wait for
new opportunities which may not arise in the short term. In all these examples, the
winner induces a negative externality on the loser. This has two implications. First,
each agent is willing to incur a payment not only to obtain the good but also to prevent
the owner from selling it to the rival. Second, in order to be optimal, the pricing and
allocation mechanism must be modified accordingly.

Allocation mechanisms in the presence of negative externalities have been studied
in many articles. In a licensing context, Katz and Shapiro (1986) argue that the optimal
price is affected by the ex-post asymmetric competition in the product market between
the firms that obtain a patent and those that do not. As Kamien et al. (1992) show, the
seller can extract some payments even from the firms that do not obtain the license.
Jehiel et al. (1996, 1999) analyze the optimal allocation mechanism when agents have
private information about their valuation for the good. In the presence of negative
externalities, if the owner decides to sell the item to one agent, his competitors are
ready to pay an amount equal to the imposed externalities in order to prevent that
sale. Therefore, in equilibrium, the seller may prefer to collect those payments and
keep the item. As the authors show, the mechanism that maximizes the revenue of the
seller is an auction with the same qualitative properties as the standard auction with-
out externalities.1 First, it can be implemented with a first or second price sealed-bid
auction with a reserve price in which bids are increasing in valuations. And second,
the mechanism is ex-post inefficient, in the sense that some profitable trades do not
occur. The mechanism exhibits only a few differences compared to an auction without
externalities. In particular, the seller needs to resort to an entry fee and, as the size of
the externality increases, both the entry fee and the reserve price increase. At equilib-
rium, the seller extracts more revenue from the auction and the good is sold with a
smaller probability.

In these papers, the externality is independent from the agent’s valuation.2 Yet,
in many situations, valuations, and externalities are highly correlated. Consider the
licensing example. A firm with a large market may also have a greater capacity to
exploit the innovation than its smaller counterparts. Therefore the large firm has a rel-
atively higher valuation for the license, and the higher the market share, the higher this
valuation. At the same time, the large firm is more likely to drive other firms out of the
market if it obtains the license, and induces negative externalities on its competitors. It
is even plausible that the larger the initial market share is, the higher those externalities.
However, if a competitor ever gets the license, the large firm suffers externalities too.
If the innovation is minor, the large firm will still remain in business, and the higher the
initial market share, the lower the externality suffered. By contrast, if the innovation
is drastic, the large firm will be driven out of the market. In that case, the higher the
initial market share, the higher the loss, and therefore the higher the externality. This

1 See Myerson Myerson (1981) for the seminal paper on optimal auctions and Engelbrecht-Wiggans (1980),
McAfee and McMillan (1987) and Klemperer (1999) for surveys.
2 In Jehiel et al. (1996), the size of the externality suffered by an agent depends only on the identity of the
winner and not on his valuation. In Jehiel et al. (1999), the externality suffered by an agent is depended on
the identity of the winner, but it is not related to his valuation. Other mechanism design problems consider
identity-dependent externalities (e.g., Aseff and Chade 2008 for the case of multi-unit auctions).
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suggests that valuation for the good, suffered externality and imposed externality are
linked through underlying variables: the specific structure of the industry determines
the sign and amount of the correlation.

The purpose of this paper is to show that the details of these correlations mat-
ter to design allocation mechanisms. We are interested in characterizing the optimal
allocation mechanism when externalities are type-dependent and showing that differ-
ent relationships between valuations and externalities result in different qualitative
properties. Furthermore, the procedures (e.g., sealed bid auctions) that implement the
optimal outcomes may also vary, and be quite different from what has been already
suggested in the literature.3

From a general viewpoint, incorporating type-dependent negative externalities
modifies the optimal design of the auction in several ways. First, the reservation utility
of each agent depends on the size of the externality he suffers if a rival obtains the
good, and therefore on his valuation.4 Second, each agent must be induced to disclose
his willingness to pay to obtain the good (as in the standard theory) and his willingness
to pay to prevent a rival from getting it. Since the incentives in terms of informational
rents needed to fulfill these two goals are sometimes in conflict, the incentive-compat-
ibility constraint will not necessarily specify an equilibrium utility monotonic in the
agent’s valuation, which departs from standard problems.5 Last, the seller’s objective
is to extract the valuation for the object but also to price the externality. This impacts
the final allocation as well as the final prices.

The paper shows that the optimal mechanism will depend on whether the externality
suffered by an agent is “increasing” (case 1), or “strongly decreasing” (case 2) in his
valuation. As reviewed in the next paragraphs, each case exhibits a different departure
and some novel properties relative to the standard auction problem.

When the externality suffered by the agent increases with his valuation (case 1),
the equilibrium utility of the agent in the optimal auction is not necessarily monotonic
in his type. Given participation, medium types obtain lower utility compared to small
or high types. Suppose that agent 1 has the lowest possible valuation, in which case
he also suffers a small externality. It is optimal for the seller to either keep the good
or allocate it to agent 2. If the valuation of agent 1 increases marginally, both his
willingness to pay to obtain the good and his willingness to pay to prevent a sale to his
rival increase. The seller is now relatively more willing to keep the good in exchange
of a payment from agent 1. If this happens, agent 1 still avoids the sale but ends up
with a lower utility. Naturally, if agent 1’s valuation increases sufficiently, then his
chances of obtaining the good himself start growing and so does his overall utility.

3 Note that similar situations have been investigated by Jehiel and Moldovanu (2000) when the item is
sold via particular procedures. However, the main focus of the present paper is to characterize optimal
procedures. Also, Carrillo (1998), and Figueroa and Skreta (2009) studied optimal allocations with type-
dependent externalities in related settings. Those analyses will be reviewed below.
4 Optimal contracting under type-dependent reservation utilities has been analyzed in Lewis and Sappington
(1989), Maggi and Rodriguez (1995), Jullien (2000) for the one-agent case. The multi-agent case has been
investigated in Carrillo Carrillo (1998), Brocas (2009, 2011), and Figueroa and Skreta (2009).
5 Our claim here is not that informational rents may be non-monotonic (a feature standard in the pres-
ence of type-dependent reservation utilities and countervailing incentives). Instead, we argue that the total
equilibrium utility may be non-monotonic. This also occurs in Parlane (2001) but for a different reason.
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Moreover, at equilibrium, the good is allocated to the agent with the highest valuation
provided it exceeds a reserve price. The reserve price faced by each agent is increasing
in the valuation of the rival: as the valuation of the rival increases, the externality the
rival may suffer also increases, and it becomes relatively more profitable to extract a
payment from the rival in exchange of keeping the good (Proposition 1).

When the externality suffered by the agent strongly decreases with his valuation
(case 2), it is never optimal to allocate the good to the agent with the highest valuation.
This is the case because the lowest valuation agent is willing to pay more to prevent
the sale to his rival compared to what the rival is willing to pay to acquire the item.
This means that the optimal strategy for the auctioneer is either to sell the good to
the agent with lowest valuation or to extract rents from the agents for not selling the
good at all. Furthermore, the reserve price faced by each agent is now decreasing in
the valuation of the rival: as the valuation of the rival increases, the externality the
rival may suffer decreases, and it becomes relatively more profitable to sell the good
to the agent rather than to extract a payment from the rival in exchange of keeping the
good. Last, compared to the full information case, it is optimal to increase the overall
likelihood of selling the good to decrease informational rents, which also departs from
standard results in the auction literature (Proposition 2).

We show that these mechanisms can be implemented with a second price sealed
bid auction that specifies for each agent an entry fee and a reserve price contingent on
the bid of the rival (Proposition 4). One interesting feature is that, when externalities
are strongly decreasing in the valuation of the agent (case 2), then the bid of an agent
is decreasing in his valuation. The idea is simply that an agent with a low valuation
has a much higher willingness to pay to prevent a sale to the rival than an agent with
a high valuation. As a result, he is willing to submit a higher bid because obtaining
the good is an insurance against suffering the externality. More generally, in second
price sealed bid auctions, the bidding strategy of an agent is decreasing in his own
valuation when externalities are strongly decreasing (Proposition 3). It also implies
that in the optimal mechanism, the reserve price is a price ceiling in that case. The
seller commits herself not to accept high bids (submitted by low valuation agents)
in order to collect large payments made as an insurance to prevent competitors from
getting the good.

Carrillo (1998) is the first paper to study the optimal contract with multiple agents
and type-dependent externalities.6 The article shows that the good will be allocated
more (resp., less) often than under full information if the reservation utility strongly
(resp., weakly) increases with the agent’s valuation. The model looks at two situa-
tions: one similar to our case 2 (with decreasing informational rents) and another one
similar to the fixed externality case (with increasing informational rents, treated as
a special case hereafter). However, contrary to our case 2 and due to the restrictions
imposed on the externality, in Carrillo (1998) the good is never allocated to the agent
with lowest valuation. More recently, Figueroa and Skreta (2009) have also studied
optimal auctions with type-dependent externalities. However, as Carrillo (1998), the
authors restrict the attention to functional forms delivering an increasing equilibrium

6 Jehiel and Moldovanu (2000) also consider multiple agents and type-dependent externalities. However,
they restrict their attention to a specific externality and do not analyze the optimal mechanism.
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utility (which rules out our case 1), and look at three situations: two similar to Car-
rillo Carrillo (1998) and one resulting from the coexistence of two possible outside
options, an issue we do not address in this paper.7 Overall, none of these articles
study the allocation when the externality is increasing in the valuation (case 1) and
they analyze a different version of the case where the externality is decreasing in the
valuation (case 2) delivering different properties. Last, none of these studies address
implementation.

The paper is organized as follows. Section 2 presents the general model and deter-
mines the constraints that the optimal mechanism must satisfy. Sections 3 and 4
characterize the properties of the optimal mechanism when externalities are increas-
ing and strongly decreasing in the valuation, respectively. Section 5 discusses sec-
ond price sealed bid auctions. Finally, Sect. 6 concludes. Proofs are relegated to the
appendix.

2 A simple allocation problem

2.1 The model

A seller offers one indivisible good to two risk-neutral potential buyers 1 and 2, indexed
by i and j. Buyer i (he) derives utility vi when he gets the good (or wins). We will
call vi , his “willingness to pay”, “type” or “valuation” and v = (vi , v j ) the vector of
valuations of both agents. Each valuation is drawn independently from a known distri-
bution with c.d.f. F(vi ) and density f (vi ). F(·) is strictly increasing and continuously
differentiable on the interval [v, v], with 0 ≤ v < v. Also, F(v) = 0 and F(v) = 1.
The valuation for the good of the seller (she) is zero.

To address the economic problems highlighted in the introduction, we assume that
buyer i suffers a negative externality if his rival obtains the good. Formally, we assume
buyer i suffers an externality −αi (v) when buyer j �= i obtains the good. This exter-
nality is negative and depends on both valuations. In order to keep the analysis as
tractable as possible, we restrict to linear externalities:

Assumption 1 αi (v) = αavi + αbv j + γ > 0 ∀ vi , v j and (αa, αb, γ ) ∈ R
3.

In this game, each agent faces three possible outcomes: (i) he obtains the good, (ii)
nobody obtains the good, and (iii) the rival obtains the good. In the absence of exter-
nalities, (ii) and (iii) are identical from each agent’s viewpoint. This implies that the
eventual allocation is irrelevant for an agent who decides not to participate in the
auction. In the presence of negative externalities however, (ii) and (iii) are different
and it becomes important to specify a rule in case one agent decides not to participate.
We endow the seller with full commitment power, and in particular with the ability to
commit to any such rule.

7 The point of the paper is to study the role of optimal threats and show that when several outside option
coexist, the seller must randomize between them.
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2.2 Examples

Let us consider a typical technology allocation problem. A new technology is available
for sale and two firms A and B compete to adopt it. We consider three distinct market
situations.8

In the first situation, firms A and B compete with the same efficiency parameter e.
Profits are φ(e, e). If A adopts the new technology, its efficiency parameter becomes
θA (> e). Given B’s efficiency parameter is still e, A’s profit is now φ(θA, e) >

φ(e, e). Similarly, if B adopts the new technology, its efficiency becomes θB(> e)
and its profit is φ(e, θB). In that setting A’s valuation is simply φ(θA, e)−φ(e, e) ≡ vA

and A’s externality is φ(e, θB) − φ(e, e) ≡ αA(vB). The externality suffered by firm
A is a function of the valuation of firm B only. This property is captured qualitatively
by our linear setting when αa = 0 and αb �= 0.9

In the second situation, firms A and B are ex ante monopolists on markets A and
B, respectively. Their respective efficiency parameters are θA and θB and their respec-
tive profits are φA(θA) and φB(θB). If A gets the license, it drives B out of market
B. If B gets the license, it drives A out of market A. In that case, A’s valuation is
φB(θA) ≡ vA and A’s externality is φA(θA) ≡ αA(vA). The externality suffered by
firm A is a function of the valuation of firm A only. We capture this property when
αa �= 0 and αb = 0. Furthermore, assuming that profit functions are increasing in
efficiency parameters, we have θA = φ−1

B (vA) and αA(vA) = φA(φ−1
B (vA)) which

corresponds to the linear case αa � 0.10

In the third situation, firms A and B are again ex ante monopolists respectively
on markets A and B, with efficiency parameters θA and θB and profits φA(θA) and
φB(θB). Now, if A gets the license, market A expands while market B shrinks. The
new profits are φA(θA) � φA(θA) and φ

B
(θB) ≤ φB(θB). Suppose that φ

′
i � φ′

i

and φ′
i

≤ φ′
i and let �i = φi − φi . Then, A’s valuation is vA = �−1

A (θA) and A’s

externality is αA(vA) = φA(�−1
A (vA))−φ

A
(�−1

A (vA)). This example corresponds to

the linear approximation αa < 0.11

Note that the case αa � 0 corresponds to a drastic innovation. The firm that has
more interest in obtaining the license is also the one that has more to lose if the license
is allocated to the rival. By contrast, in the case αa < 0, the innovation is minor and
the firm that has more interest in obtaining the license has less to lose if the license is

8 Even though we decided to restrict the attention to negative externalities, the analysis could be extended
to positive type-dependent externalities. For instance, the private value case of auctions with cross-share-
holding (see Dasgupta and Tsui 2004) could be captured by externalities of the form αi (v) < 0, αa = 0 and
αb > 0. Incentive collusive transfers in bidding rings (see McAfee and McMillan 1992) generate similar
externalities.
9 Assuming profits are increasing in efficiency parameters, the example corresponds to αb � 0.
10 Note that the profits φA and φB are defined up to a constant and we can always find a parametrization
such that αA(vA) < 0 for all vA .
11 Given we concentrate on situations in which the externality is negative at each point, profit functions
must be such that φA(�−1

A (v)) − φA(�−1
A (v)) > 0. This is captured in our linear setting by assuming

γ > −αav.
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allocated to the rival. The lower αa , the less a firm with high vi suffers when its rival
adopts the new technology.

2.3 Allocation under complete information

Call π F
i (v) agent i’s net surplus under full information. It represents the difference in

the payment that the seller can extract from i in exchange of the good and the payment
she can extract from j in exchange of not selling the good to i :

π F
i (v) = vi − α j (v) for all i, j = 1, 2 and i �= j

where, by symmetry, π F
j (vi , v j ) ≡ π F

i (v j , vi ). Call also X F
i (v) the probability of

selling the good to agent i under full information. The optimal allocation rule is:

X F
i (v) = 1 if and only if π F

i (v) > max{0, π F
j (v)} for all i, j = 1, 2 and i �= j

This rule constitutes a benchmark for comparison with the asymmetric information
case. Note that the good is not always allocated under complete information (X F

1 (v) =
X F

2 (v) = 0 when π F
1 (v) < 0 and π F

2 (v) < 0). However, the seller still collects pay-
ments: agent 1 pays α1(v) in exchange of not selling the good to 2 and agent 2 pays
α2(v) in exchange of not selling the good to 1. The seller does not sell the good in
order to collect those payments when they exceed the payments she can obtain from
selling the good (namely vi + αi (v) from agent i if she allocates the good to i).12

Last, under complete information it is optimal to allocate the good to the agent with
the highest valuation when 1 + αa > αb, and to the agent with the lowest valuation
when 1 + αa < αb, provided the surplus derived from these sales are positive.

2.4 Feasible mechanisms under asymmetric information

The reservation utility of each agent is given by the outcome of the auction if he
does not show up and it is mechanism dependent. Note that an agent wants not only
to acquire the good, but also to avoid the externality that results when the rival gets
it. Then, he is prone to pay and enter the auction if participating buys him a chance
to prevent the other agent from acquiring the good. This generates rents that can be
captured by the seller. They are maximized when every agent enters which is guaran-
teed if the seller can commit to give the good for free to one agent if the other does
not participate. This is well-known and follows directly from the facts that the seller
has full commitment power and externalities are negative.13 Overall, the reservation
utility of bidder i is

12 Said differently, the seller allocates the good to agent i rather than j if his net surplus vi + αi (v) is the
highest, provided the net surplus exceeds the externality payments that can be collected by not selling at all
αi (v) + α j (v).
13 Although standard in the literature on auctions with externalities (see e.g., Carrillo 1998, Jehiel et al.
1996, 1999 etc.), this assumption is strong. If an agent does not show up, the seller will have ex-post incen-
tives to conduct the auction with only one bidder rather than give him the good for free. In Brocas (2003),
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wi (vi ) = −αavi − αb

v∫

v

v j f (v j )dv j − γ. (1)

The revelation principle applies in our setting and we can restrict the attention to
direct mechanisms that induce truth-telling. A direct mechanism is characterized by
the interim probability that agent i gets the good, Xi (v1, v2) and the associated trans-
fers ti (v1, v2). Let ui (vi , v

′
i ) be the expected utility of bidder i when he participates in

the auction, his valuation is vi , he announces v′
i , and the other bidder discloses his true

valuation v j . We also denote by ui (vi ) ≡ ui (vi , vi ) his expected utility under truthful
revelation. We have

ui (vi , v
′
i ) = Ev j

[
vi Xi (v

′
i , v j ) − αi (vi , v j )X j (v

′
i , v j ) − ti (v

′
i , v j )

]
. (2)

The mechanism must satisfy the following three constraints. First, agents must prefer
to participate in the auction rather than not (individual-rationality):

ui (vi ) � wi (vi ) ∀ i, vi .

Second, they must be better-off by disclosing their true valuation (incentive-compati-
bility).

ui (vi ) � ui (vi , v
′
i ) ∀ i, vi , v

′
i .

Third, the selection rule must be feasible:

X1(v) � 0, X2(v) � 0, X1(v) + X2(v) ≤ 1 ∀ v.

Lemma 1 In the optimal mechanism, the seller solves the following program P:

P : max

v∫

v

v∫

v

[
t1(v) + t2(v)

]
f (v1) f (v2)dv1dv2

s. t. ui (vi ) − ui (v
′
i ) =

vi∫

v′
i

Ev j

[
Xi (s, v j ) − αa X j (s, v j )

]
ds ∀ i, v′

i ≤ vi (IC1)

Ev j

[
Xi (v

′
i , v j ) − αa X j (v

′
i , v j )

]
≤ Ev j

[
Xi (vi , v j ) − αa X j (vi , v j )

]
∀ i, v′

i ≤ vi (IC2)

ui (vi ) � wi (vi ) ∀ i, vi (IR)

Xi (vi , v j ) � 0 ∀ i, vi , v j (F0)

X1(vi , v j ) + X2(vi , v j ) ≤ 1 ∀ vi , v j (F1)

Footnote 13 continued
we show that when this assumption is relaxed, there is a coordination problem in the behavior of agents
that gives rise to multiple equilibria.
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Proof See Appendix A-1.

These are the by now standard conditions in mechanism design problems.14 How-
ever, two new features result from the type-dependency of the externality. First, the
r.h.s. of inequality (IR) is type-dependent: the reservation utility wi (vi ) is an (increas-
ing or decreasing) function of the agent’s valuation, depending on the slope of the
externality. Second, the r.h.s. of equality (IC1) is not necessarily positive: conditional
on accepting to participate in the auction, it is not necessarily the case that agents with
higher valuation get a higher equilibrium utility. Contrary to the standard framework,
Ev j [Xi (vi , v j ) − αa X j (vi , v j )] may or may not be positive. We have

d

dvi
ui (vi ) = Ev j [Xi (v)] − αa Ev j [X j (v)] and

d

dvi
wi (vi ) = −αa . (3)

We call informational rents, �i (vi ), the difference between the utility of an agent who
participates in the auction and his reservation utility. We have

�i (vi ) = ui (vi ) − wi (vi ) and
d

dvi
�i (vi ) = Ev j [Xi (v)] + αa(1 − Ev j [X j (v)]).

(4)

Given the seller wants to minimize the rent �i (vi ), there is at least one type v̂, which
we call a binding type for which the (IR) constraint binds: �i (v̂) = 0, that is ui (v̂) =
wi (v̂).15

Lemma 2 In an auction with negative type-dependent externalities the incentive-com-
patibility and individual-rationality constraints are endogenously linked:

(i) When αa > 0, wi (vi ) is decreasing in vi , ui (vi ) may not be monotonic in vi and
v̂ = v.

(ii) When αa = 0, wi (vi ) is constant, ui (vi ) is increasing in vi and v̂ = v.
(iii) When αa ≤ −1, wi (vi ) is increasing in vi , ui (vi ) is increasing in vi and v̂ = v.
(iv) When αa ∈ (−1, 0), wi (vi ) is increasing in vi , ui (vi ) is increasing in vi and

v̂ ∈ [v, v].
Proof See Appendix A-2.

When the externality increases with the agent’s valuation, the utility of the agent
if he participates in the auction may increase or decrease with his type. It is always
increasing when αa = 0 [case (ii)], and it is not monotonic when αa > 0 [case
(i)]. However, even when the utility decreases, the reservation utility decreases faster
because the externality is always suffered in case of not participating. As a result, in the
absence of adequate incentives, the agent is inclined to under-state his type. Therefore,

14 As a reminder, (IC1) is the (first-order) local optimality condition which ensures that stating the true
valuation v′

i = vi is a local optimum. (IC2) is the (second-order) monotonicity condition. It ensures the
convexity of the equilibrium utility, and therefore that the local optimum is a global maximum.
15 At this stage, we cannot establish whether the binding type is unique or not.
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a b

c d

Fig. 1 Equilibrium utility ui (vi ) and reservation utility wi (vi ) in the different cases

the informational rents that the seller must leave to the agent to avoid such behavior
and induce truth-telling must increase with vi and the binding type is v [cases (i) and
(ii)]. When the externality decreases with the agent’s valuation, both the utility of par-
ticipating and the reservation utility increase with the agent’s type. Again, since the
externality is always suffered under no-participation, the reservation utility increases
faster than the utility under participation if the slope is sufficiently steep (formally, if
αa ≤ −1). In that case and again without the proper incentives, the agent will over-
state his type, so the informational rents left to induce truth-telling must decrease with
vi [case (iii)]. Last, when the externality is decreasing but small (αa ∈ (−1, 0)), there
exist countervailing incentives to misreport and, as a result, informational rents are not
monotonic in the type [case (iv)]. These qualitative properties are illustrated in Fig. 1.

The case αa = 0 [case (ii)] corresponds to the model analyzed by Jehiel et al. (1996)
and corresponds also to the first case in Carrillo (1998) and the first case in Figueroa
and Skreta (2009), so we will only treat this as a particular case in Remark 1. The
problem is more interesting when αa �= 0, as the reservation utility is type-dependent
and the equilibrium utility is not necessarily increasing in the agent’s type.

Type-dependent reservation utilities have been analyzed in many settings (see e.g.,
Lewis and Sappington 1989, Maggi and Rodriguez 1995, and Jullien 2000 for the sin-
gle agent case and Carrillo 1998 for the multi-agent case). This literature has already
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emphasized that, depending on the relative degree of convexity of the reservation util-
ity and the equilibrium utility, the binding type is at the bottom, at the top or at an
interior point. For each of these cases, the informational rents are increasing, decreas-
ing and U-shaped, respectively. Case (iii) falls roughly in the category of the scenarii
analyzed in the literature. In particular, it shares common features with the second
case analyzed in Carrillo (1998) and the second case analyzed in Figueroa and Skreta
(2009). However, some new interesting properties emerge in our setting. Also, case
(iv) is the multi-agent counterpart of the literature dealing with interior binding types.
It has been studied in Brocas (2011).

The situations analyzed in that literature always exhibit an equilibrium utility that is
increasing (the standard (IC1) constraint) and convex (the standard (IC2) constraint)
in the agent’s type. Non-monotonic equilibrium utility functions emerge rarely in the
contract theory literature.16 Case (i) departs from the existing literature as it combines
both features: reservation utilities are type-dependent and the equilibrium utility is not
monotonic. For the case of our allocation mechanism, we will show that our problem
can still be solved through standard methods to obtain novel properties.

We will now derive the properties of the optimal allocation mechanisms in cases (i)
and (iii). Recall that case (i) can be interpreted as the allocation problem of a drastic
innovation, wile case (iii) corresponds rather to the allocation of a minor innovation.

3 Optimal mechanism when αa > 0

Given αa > 0, incentive-compatibility requires that the utility of agent i be convex in
vi ((IC2)) but not necessarily monotonic ((IC1)). Also, the reservation utility wi (vi )

is decreasing in vi and, the informational rents �i (vi ) are increasing in vi . Then, (IR)

binds at v:

ui (v) = wi (v) and ui (vi ) > wi (vi ) ∀ vi > v. (5)

Note that for each mechanism A satisfying (IC2)–(F0)–(F1), the convexity of the
equilibrium utility implies that there exists at most one valuation ṽ(A) such that17:

d

dvi
ui (ṽ(A)) = 0. (U)

16 See Parlane (2001) for an example. The author studies the optimal allocation of two tasks to two agents
with private information. If one task is more valuable than the other, the model can be reinterpreted as
a competition between agents, where the “winner” enjoys the valuable task and the “loser” suffers the
(type-dependent) externality of getting the least valuable task. In Parlane (2001), the reservation utility is
normalized to zero and countervailing incentives arise in the “specialization case” because the difference
between valuation and externality is positive for high-type agents and negative for low-type ones. As a result,
the total equilibrium utility (which is equal to the informational rents) can be non monotonic. This is also
reminiscent of Chen and Potipiti (2010) for the case of allocation mechanisms with positive externalities.
17 For some mechanisms A, it may a priori be the case that dui (vi )/dvi < 0 for all vi (in which case
ṽ(A) ≡ v) or that dui (vi )/dvi > 0 for all vi (in which case ṽ(A) ≡ v).
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so that agent i’s equilibrium utility is decreasing in vi for all vi < ṽ(A) and increas-
ing in vi for all vi > ṽ(A). Given (5) and using (IC1) and the integration by parts
technique, the seller’s optimization program P is equivalent to program P∗:

P∗ : max

v∫

v

v∫

v

[
Xi (v)π∗

i (v) + X j (v)π∗
j (v)

]
dF(vi )dF(v j ) − 2wi (v)

s.t. (IC2) − (F0) − (F1),

where π∗
i = vi − α j (v) − 1−F(vi )

f (vi )
+ αa

1−F(v j )

f (v j )
and π∗

j = v j − αi (v) − 1−F(v j )

f (v j )
+

αa
1−F(vi )

f (vi )
.

π∗
i (v) is agent i’s virtual surplus and it represents the net surplus that the auctioneer

can extract by selling the good to i rather than keeping it adjusted for the informa-
tional rents that she is obliged to grant due to the asymmetry of information with
both bidders. Note that the net surplus of selling the good to agent i is π F

i (v). Under
asymmetric information, the seller leaves informational rents to both bidders to induce
truthful revelation of their valuations. This is reflected in the two distortions 1−F(vi )

f (vi )

and −αa
1−F(v j )

f (v j )
. Increasing the rent of agent i with type vi requires to increase the

rent of any type above vi , which are in proportion 1 − F(vi ). At this stage, we need
to introduce the following technical assumption.

Assumption 2a (i) d
dvi

[
vi − 1−F(vi )

f (vi )

]
> max{0, αb} for all vi and (ii) αb ≤ 1.

In auctions with no or fixed externalities (αa = αb = 0), the monotone hazard
rate property ensures that the version of (IC2) obtained for αa = 0 is satisfied (for
free) at equilibrium: it makes the problem regular. In auctions with type-dependent
externalities, we need a further condition to make the problem regular. Assumption
2a(i) is sufficient. Condition (ii) guarantees that the allocations under complete and
asymmetric information are comparable.18

Assumption 3 We consider two cases: (i) αa ∈ (0, 1) and αb < 0 ; (ii) αa � 1 and
αb ∈ (0, 1).

These conditions ensure that the reserve price functions in Proposition 1 cross only
once.19

Proposition 1 The optimal mechanism A∗ solves P∗. It has the following properties:

X∗
i (vi , v j ) =

{
1 if vi > v j and vi > r∗

i (v j )

0 otherwise,

18 The assumption is sufficient. Results (i)–(iii) in Proposition 1 are true under Assumption 2a(i), but point
(iv) requires Assumption 2a(ii).
19 Even though they simplify the proof, they are not critical to determine the qualitative properties of the
mechanism.
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where r∗
i (v j ) is the value of vi such that π∗

i (r̃i (v j ), v j ) = 0. The mechanism implies
that:

(i) The agent with lowest valuation never obtains the good (vi > v j ⇔ X∗
j (vi , v j ) =

0).
(ii) The reserve price for agent i is increasing in the valuation of agent j (∂r∗

i /∂v j >

0).
(iii) The type that obtains the minimum equilibrium payoff is ṽ(A∗) ∈ (v, v).
(iv) The good may be allocated more or less often than under full information.

Proof See Appendix A-3.

The optimal allocation when valuations are privately known is obtained by com-
paring for each announced pair of valuations the three virtual surplus {π∗

1 , π∗
2 , 0}.

First, the probability of obtaining the good is increasing in the agent’s type [part (i)].
Intuitively, if vi > v j , then obviously i benefits more from obtaining the good than
j . Given that αa > 0, j’s willingness to pay to prevent a sale to i is lower than i’s
willingness to pay to prevent a sale to j . As a result, the seller always prefers to sell
the good to i rather than extract a payment from j and keep the good. So, in equi-
librium, either the good is not sold or it is allocated to i . Second, reserve prices are
type-dependent and in particular each agent’s reserve price is increasing in the valu-
ation of the rival [part (ii)]. As the valuation of the rival increases, the externality the
rival may suffer also increases and so does his willingness to pay to avoid a sale. It
therefore becomes relatively more profitable to keep the item in exchange of a pay-
ment from the rival rather than to sell to the agent. Third, a high-type agent is willing
to pay more than his low-type opponent both to get the good and to avoid suffering
the externality. As a result, a truthful revelation mechanism implies that informational
rents must be increasing in the agent’s valuation. However, and contrary to previous
analyses, a medium-type agent obtains a smaller equilibrium utility than a low-type or
a high-type agent. Indeed, allocating the item to a medium-type or a low-type agent is
not very attractive. However, a medium-type agent is willing to pay more to avoid the
sale to the rival than a low-type agent. Hence, a low-type agent rarely obtains the good
and is extracted few payments, while a medium-type agent obtains rarely the item but
is extracted payments in exchange of not selling to his rival. Hence, the equilibrium
utility of a medium-type agent is smaller than that of a low-type agent [part (iii)]. This
is a consequence of Lemma 2. Fourth, in order to decrease informational rents, and
compared to the full information case, the good must be allocated less often when
agents have relatively low valuations and more often when agents have relatively high
valuations [part (iv)]. Hence, on average, the good is sold more or less often than under
full information depending on the exact shape of the externality. This result contrasts
with the standard auction mechanisms, including auctions with (non type-dependent)
externalities, in which the trade-off between rents and efficiency is always solved by
reducing the likelihood of allocating the item. The equilibrium allocation is depicted
in Fig. 2.

Last, it is easy to see why the problem is regular under Assumption 2a. Under the
assumption, the reserve price faced by i is increasing in the valuation of j . When vi

increases, i is more likely to exceed the reserve prices r∗
i (v j ) and Ev j Xi (v) increases.
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Fig. 2 Optimal allocation when αa > 0

Moreover, j is less likely to have a valuation above r∗
j (vi ), and Ev j X j (v) decreases.

This delivers (IC2) for free.

Remark 1 When αa = 0, then (IR) binds at v (see Fig. 1c). If we further replace
α j (vi ) = αbvi + γ by α j (i.e. each agent suffers a different externality but it is fixed
and uncorrelated with his type), then we are exactly in the case analyzed by Jehiel
et al. (1996).

4 Optimal mechanism when αa ≤ −1

When αa ≤ −1, incentive-compatibility requires that the utility of agent i be convex
in vi (see (IC2)) and monotonic (see (IC1)). At the same time, the reservation utility
wi (vi ) is linearly increasing in vi and the informational rents �i (vi ) are decreasing in
vi . At equilibrium, (IR) will bind at v:

ui (v) = wi (v) and ui (vi ) > wi (vi )∀ vi < v. (6)

Given (6) and using (IC1) and the integration by parts technique, the seller’s optimi-
zation program P is now equivalent to program P∗∗:

P∗∗ : max

v∫

v

v∫

v

[
Xi (v)π∗∗

i (v) + X j (v)π∗∗
j (v)

]
dF(vi )dF(v j ) − 2wi (v)

s. t. (IC2) − (F0) − (F1),

where π∗∗
i (v) = vi − α j (v) + F(vi )

f (vi )
− αa

F(v j )

f (v j )
and π∗∗

j (v) = v j − αi (v) + F(v j )

f (v j )
−

αa
F(vi )
f (vi )

.
The interpretation of the virtual surplus is the same as before, except that the dis-

tortion due to informational rents act differently. Here, increasing the rent of agent i
with type vi requires to increase the rent to any agent with type below vi , which are
in proportion F(vi ).
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Assumption 2b d
dvi

[
vi + F(vi )

f (vi )

]
> αb � 0 for all vi .

It is the counterpart of Assumption 2a.

Assumption 4 We consider two cases: (i) αa < −1 and αb � 0; (ii) αa = −1 and
αb > 0.

These technical conditions ensure that the the seller is not indifferent between
allocating the good to agent i or agent j when valuations differ.

Proposition 2 The optimal mechanism A∗∗ solves P∗∗. It has the following proper-
ties:

X∗∗
i (vi , v j ) =

{
1 if vi < v j and vi > r∗∗

i (v j )

0 otherwise,

where r∗∗
i (v j ) is the value of vi such that π∗∗

i (r∗∗
i (v j ), v j ) = 0.20

The mechanism implies that:

(i) The agent with highest valuation never obtains the good (vi > v j ⇔
X∗∗

i (vi , v j ) = 0).
(ii) The reserve price for agent i is decreasing in the valuation of agent j (∂r∗∗

i /∂v j <

0).
(iii) The good is allocated more often than under full information.

Proof See Appendix A-4.

The properties of the mechanism are as follows. First, the good is never allocated to
the agent with highest valuation among the two. Recall that agents are willing to pay
not only to obtain the good but also to prevent the sale to the rival. When αa � −1,
low-type agents have more to lose if the rival obtains the good than high type agents.
They are therefore willing to pay to avoid the sale. Formally, if vi > v j , i benefits more
from obtaining the good than j . However, given that αa ≤ −1, then j’s willingness
to pay to prevent a sale to i is much higher than i’s willingness to pay to prevent a
sale to j . As a result, the seller always prefers to extract a payment from j and keep
the good rather than sell it to i . So, in equilibrium, either the good is not sold or it is
allocated to j .21 This feature of the mechanism does not emerge in other studies of
auctions with negative externalities. The articles focusing on externalities that are not
type-dependent cannot deliver such result: type-dependency is a necessary condition
for our result. Moreover, the result holds when the externality satisfies certain condi-
tions: low-type agents must be willing to pay enough to avoid the sale to high-type
agents so that the seller find it profitable to not allocate the item to high-type agents.

20 Stated differently, X∗∗
i (v) = 1 iff π∗∗

i (v) > max{0, π∗∗
j (v)} and X∗∗

j (v) = 1 iff π∗∗
j (v) >

max{0, π∗∗
i (v)}. Note that if π∗∗

i (vi , v j ) > 0 for all vi then r∗∗
i (v j ) ≡ v and if π∗∗

i (vi , v j ) < 0 for
all vi then r∗∗

i (v j ) ≡ v.
21 This is reminiscent of the complete information case: given 1 + αa ≤ 0 and Assumption 2a, we have
1 + αa ≤ αb and it is optimal to allocate the good to the agent with the smallest valuation.
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Fig. 3 Optimal allocation when αa < −1

This type of situation has not been studied earlier. We shall see in Sect. 5 that our
result has other related interesting consequences. Second, the reserve price faced by
each agent is now decreasing in the valuation of his competitor. The idea is simply
that, as vi increases, the externality suffered by i if the good is sold to j decreases,
and so is i’s willingness to pay to avoid that sale. Therefore, it becomes relatively
more beneficial to sell the good to j . This is reflected in a lower reserve price r∗∗

j [part
(ii)]. Last, the good is allocated more often than under full information. As in all the
contracting literature, the auctioneer solves the standard trade-off efficiency vs. rents.
In traditional auction models, in order to limit the informational rents, the auctioneer
decreases the likelihood of selling the good. However, in our case, the mechanism
to diminish the informational rents is precisely the opposite, that is to increase the
likelihood of selling the good (X∗∗

i � X F
i ) [part (iv)].22 By doing so, externalities are

exerted also more often than in the first best scenario. These results are represented
in Fig. 3.23

5 Second price sealed bid auctions

The two previous sections showed that the properties of the optimal mechanism are
tied to the specific nature of the externalities. In terms of the examples, this means in
particular that the allocation of licenses should exhibit different rules depending on
the exact nature of the technology. We believe this is important as the earlier literature
on auctions with externalities focuses on this type of good. Of course, the argument
applies to other settings in which agents in the auction are engaged in ex-post inter-
actions (e.g., competitors in lumber auctions, procurement contracts auctions, etc).

22 To see this, note that when (IR) binds at the top, informational rents are smaller the steeper the slope of
the equilibrium utility. Rents decrease when X∗∗

i and X∗∗
j increase.

23 Again, it is easy to see why the problem is regular under Assumption 2b. Indeed, the reserve price faced
by agent i is decreasing in the valuation of agent j . When vi increases, other things being equal, i is more
likely to exceed the reserve prices r∗∗

i (v j ) and j is also more likely to have a valuation above r∗∗
j (vi ).

Then, both Ev j Xi (v) and Ev j X j (v) increase in vi , which delivers (IC2) for free.
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To take this prediction a step further, we now ask the question of how the mech-
anism could be implemented through auction procedures. We start by analyzing the
allocation of the item via a pure second price sealed bid auction, and we then deter-
mine how such procedure should be modified to implement the optimal mechanism
outcome. Let us denote by bi the bid of agent i . Our first result is as follows:

Proposition 3 In a second price sealed bid auction, the equilibrium pure symmetric
bidding strategy is b(vi ) = vi + αi (vi , vi ). When 1 + αa > 0, it is increasing in vi

and it exists if 1 + αa + αb � 0. When 1 + αa < 0, it is decreasing in vi and it exists
if 1 + αa + αb ≤ 0.

Proof See Appendix A-5.

When αa ≤ −1, then the agents with highest valuations will always submit the
lowest bids. This constitutes a novelty in the literature of auctions with private val-
ues.24 The idea is simply that if agent i has a higher valuation than agent j , then j
has a much higher willingness to pay than i to prevent the auctioneer from selling
the good to the rival. As a result, j is willing to submit a higher bid than i , because
obtaining the good is the best insurance against suffering the externality.

Each agent bids for two motives. First, i is ready to pay up to vi to obtain the good.
Second, i is willing to pay up to αi (vi , v j ) to prevent a rival with type v j from getting
the good (an insurance). In equilibrium, each agent bids the sum of his valuation and
the externality he suffers if his rival is exactly his type. If j plays that strategy, i wins
at the correct time if he bids vi + α(vi , vi ). Deviating results in losing or winning
at too high a price. It is interesting to note that the strategy is not dominant when
αb �= 0. This is the case because i needs to know the valuation of agent j to determine
the externality he will suffer if j wins. In the absence of externalities, the bidding
strategy is dominant because i cares only about the bid of his rival and not about his
valuation. This is also true as long as the externality is fixed or when αb = 0. Last,
there is separation only if a further regularity condition is satisfied. This is reminis-
cent of Jehiel and Moldovanu Jehiel and Moldovanu (2000).25 Interestingly, it is also
reminiscent of Milgrom and Weber Milgrom and Weber (1982). To see this, note that
there are only two outcomes for agent i in a pure second price sealed bid auction:
either he obtains the good or his rival obtains the good. Therefore, the willingness
to pay of agent i corresponds to his willingness to pay to get the good and avoid the
sale to his competitor at the same time (in which case the first outcome realizes). It is
then equal to the modified value vi + αi (vi , v j ). Given type-dependency, values are
interdependent as in Milgrom and Weber Milgrom and Weber (1982).26

24 This feature can arise in other settings. See Moldovanu and Sela (2003) for a case with interdependent
values.
25 The case studied in Jehiel and Moldovanu Jehiel and Moldovanu (2000) is qualitatively equivalent to
the situation where 1 + αa � 0 and 1 + αa + αb � 0. The authors derive the same bidding strategies,
which always exist in their setting. Also, given their assumptions, the optimal bidding strategy cannot be
decreasing.
26 In the case the pure second price sealed bid auction, our model is equivalent to the model of interde-
pendent values with independent signals. To see this, when 1 + αa > 0, the optimal symmetric increasing
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Remark 2 We have concentrated on auctions that maximize revenue. The reader might
wonder what an efficient auction looks like in our setting. Efficiency requires to allocate
the good to i when vi −α j (v) > v j −αi (v). In other words, efficiency corresponds to
the first best scenario under revenue maximization. This implies in particular that it is
efficient to allocate the good to the agent with the highest valuation when 1+αa > αb,
and to the agent with the lowest valuation when 1 + αa < αb.27 Given Proposition
3 and the above conditions, the second price sealed bid auction is efficient when
1 + αa ≥ max{0, αb} and when 1 + αa ≤ min{0, αb}.

In what follows, we show how mechanisms A∗ and A∗∗ can be implemented with
a suitably modified second price sealed bid auction.

Proposition 4 The mechanisms (A∗, A∗∗) can be implemented with a modified sec-
ond price sealed bid auction in which agent i pays an entry fee c, faces a reserve price
contingent on the bid of the rival Ri (b j ), and plays a pure bidding strategy. Provided
the bidding strategy exists,

• In mechanism A∗∗, i is allocated the good if his bid is smaller than R∗∗
i (b j ) where

R∗∗
i (b j ) decreases with the rival’s bid (∂ R∗∗

i /∂b j < 0). The agent’s optimal
bidding strategy b∗∗(vi ) decreases with his valuation (∂b∗∗/∂vi < 0). Besides,
R∗∗

i (b∗∗(v j )) ≡ b∗∗(r∗∗
i (v j )) where r∗∗

i (v j ) is the optimal reserve price in A∗∗.
• In mechanism A∗, i is allocated the good if his bid is higher than R∗

i (b j ) where
R∗

i (b j ) increases with the rival’s bid (∂ R∗
i /∂b j > 0). The agent’s optimal

bidding strategy b∗(vi ) increases with his valuation (∂b∗/∂vi > 0). Besides,
R∗

i (b∗(v j )) ≡ b∗(r∗
i (v j )) where r∗

i (v j ) is the optimal reserve price in A∗.

Proof See Appendix A-6.

As usual, the seller resorts to an entry fee in order to extract maximum payments
from the bidders. Agents are willing to incur this cost because they are threatened to
suffer the externality for sure if they refuse to participate. The implementation has
three main novelties with respect to the cases already analyzed in the literature.

First, the reserve price of each agent depends on the bid of his competitor. This is
a consequence of the reserve price in the optimal mechanism being a function of the
competitor’s valuation (see Propositions 1 and 2). Second, mechanism A∗ can only be

Footnote 26 continued

bidding strategy maximizes
∫ b−1(bi )
v (vi − b(s)) f (s)ds − ∫ v

b−1(bi )
αi (vi , s) f (s)ds ≡ ∫ b−1(bi )

v (vi +
αi (vi , s) − b(s)) f (s)ds − ∫ v

v αi (vi , s) f (s)ds. Given the second term is independent of bi , the maxi-

mization of this function is equivalent to the maximization of
∫ b−1(bi )
v (zi (vi , s) − b(s)) f (s)ds where

z(vi , v j ) = vi +αi (vi , v j ) is i’s valuation. Note that this is also reminiscent to the case with private values
when the distribution is symmetric in Dasgupta and Maskin (2000).
27 Note also that, at the efficient solution, the good is allocated to i when his modified value vi +αi (vi , v j )

exceeds j’s modified value v j + α j (v j , vi ). The condition 1 + αa > αb means that buyer i’s valuation
has a greater marginal effect on i’s modified value than on the modified value of buyer j . This condition is
equivalent to the condition that is necessary to get efficiency in Dasgupta and Maskin (2000). In our setting,
it is also sometimes efficient to allocate the good to the agent with the lowest valuation. This is true when
1 + αa < αb , that is when buyer i’s valuation has a smaller marginal effect on i’s modified value than on
the modified value of buyer j .
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implemented with a sealed bid auction in which the bid of each agent is increasing in
his valuation, and mechanism A∗∗ can only be implemented with a sealed bid auction
in which the bid of each agent is decreasing in his valuation. This is a consequence
of Propositions 1, 2, and 3. Third, the optimal reserve price is a price ceiling when
αa ≤ −1. This is true because it is optimal to sell the good to i if his valuation is high
enough (vi > r∗∗

i (v j )) while bids decrease in valuations.28 The seller commits herself
to not accept high bids in order to extract payments even when the good is not sold.
In A∗∗, high bids come from low types who primarily wish to get insured against the
externality. If v1 > v2, it is optimal to extract the part of the payment agent 2 wishes to
make to avoid the sale to agent 1. However, given agent 2 values the good itself very
little, it is better to not extract the payment he is willing to make to obtain the item
and, instead, extract the payment agent 1 wishes to make to avoid the sale to agent 2.
Overall, high bids are shut down and entry fees are collected.

The optimal mechanisms A∗ and A∗∗ can be implemented with the modified second
price sealed bid auction if the required bidding strategies exist. It turns out that the
bidding strategies are difficult to characterize analytically for general distributions.
We provide a full characterization of the equilibrium in the case of a uniform distri-
bution on (0, 1) and when αb = 0 in Appendix B. A full implementation requires
to resort to additional taxes/subsidies in that case. We illustrate it with the following
numerical example. Suppose αa = −2 and γ = 4, the optimal reserve price is r∗∗

i = 1
if vi < 1/2 and −2vi + 2 when vi � 1/2. The price ceiling R∗∗

j (bi ) and the pure
bidding strategy b∗∗

i (vi ) are

b∗∗
i (vi ) =

⎧⎪⎪⎨
⎪⎪⎩

1 vi < 1/2
−2vi + 2 vi ∈ (1/2, 2/3)

−5vi + 4 vi ∈ (2/3, 4/5)

0 vi > 4/5

,

R∗∗
j (bi ) =

⎧⎪⎪⎨
⎪⎪⎩

1 bi < 1/2
−4/5bi + 6/5 bi ∈ (1/2, 2/3)

−5bi + 4 bi ∈ (2/3, 4/5)

0 bi > 4/5.

Note that the bidding strategy in the pure second price sealed bid auction would be
vi +(−2vi +4). Adding a fixed price ceiling results in truncating the bidding function:
some valuations bid according to the same bidding strategy and some others bid at the
price ceiling. When the price ceiling is bid dependent, the bidding strategy itself is
affected. By placing a bid bi , not only agent i affects his own chances of winning but
also the “standards” faced by his rival. When bi increases, the price ceiling faced by
j decreases by −2 resulting in a lower chance of suffering the externality. Combining
both effects, low valuations bid the reserve price r∗∗

i (vi ) and high valuations bid an
amount reflecting the basic bid in a second price sealed bid auction vi +(−2vi +4) and
the added value of affecting the price ceiling of the rival +2(−2vi + 4). Furthermore,
to implement the optimal mechanism, it is necessary to add a tax/subsidy on some

28 Note that this is also true under complete information.
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bids. In the example, the seller taxes all winning bids below 2/3 by an amount of 8.
This distort further the strategy of high valuation bidders. Overall, their equilibrium
bidding strategy is b∗∗

i (vi ) = vi + (−2vi +4)+2(−2vi +4)−8 = −5vi +4.29 Last,
the entry fee in this knife-edge example is c = 0. This is the case because the binding
type (vi = 1) always suffers the externality in the second price sealed bid auction.
There is no extra payment to collect from him.

6 Conclusion

This paper has extended previous works of auctions with type-dependent negative
externalities. The analysis of the allocation mechanism has different properties depend-
ing on whether externalities are strongly decreasing or increasing in the agent’s valua-
tion, leading to two novel theoretical features. First, when externalities are increasing
in the valuation, the equilibrium utility of an agent is non monotonic in the valua-
tion. Typically, there exists an interior type that obtains the lowest level of utility.
Second, when externalities are strongly decreasing in the valuation, the good might
be sold to the agent with lowest valuation and the seller may allocate the good with
higher probability than in the full information case. If the seller uses a second price
sealed bid auction, the bids will be decreasing in valuations, and she should resort to
a bid-dependent price ceiling to implement the optimal auction. Last, from an applied
perspective, we have shown that modeling externalities is critical as different models
lead to different predictions in terms of mechanism design.

We would like to conclude by pointing out a few alleys for future research. First, it is
natural to extend the analysis to the case where valuations are also correlated. Second,
the current analysis abstracts from the fact that the outcome of the auction reveals
information to participants. One way to justify this is to assume that information is
revealed ex-post. In the case where ex-post payoffs are supposed to depend on non
observable ex-post types, there is a possible informational leakage in the auction. Of
course, this must be anticipated at the time of placing bids.30 Third, it could be also
interesting to analyze the case of positive externalities and to determine whether some
of our results obtain there as well. For instance, in cases in which higher types enjoy
a relatively bigger externality than lower types, the latter should be granted the good
and the mechanism should also be implemented with a price ceiling. Last, we have
seen that in the presence of externalities, each player has two distinct valuations. One
to obtain the good and a second to avoid the sale to his competitor. We have analyzed
a case in which both are linked and can be inferred from each other. In other settings,
the two valuations may not be fully correlated. In that case, asking to send a unique
message on the willingness to pay restricts the ability to elicit the two distinct valu-
ations. It would be interesting to characterize auction procedures that implement the

29 This ensures that the bidding strategy is strictly increasing at the time required by the optimal mechanism.
See Appendix for details.
30 This issue has been studied in Goeree (2003) for the case where only the type of the winner plays a role
in the aftermarket and for specific auction procedures.
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optimal auction. We conjecture that agents should be asked to submit a bid to obtain
the good as well as a bid to avoid the sale to the competitor.

Appendix A

Appendix 1

Note that ui (vi , v
′
i ) = ui (v

′
i , v

′
i )+ (vi −v′

i )[Ev j Xi (v
′
i , v j )−αa Ev j X j (v

′
i , v j )]. Then

the incentive-compatibility constraint is equivalent to:

ui (vi , vi ) ≥ ui (v
′
i , v

′
i ) + (vi − v′

i )[Ev j Xi (v
′
i , v j ) − αa Ev j X j (v

′
i , v j )]. (7)

Using this inequality twice, the incentive-compatibility constraint is equivalent to

(vi − v′
i )[Ev j Xi (v

′
i , v j ) − αa Ev j X j (v

′
i , v j )] (8)

≤ ui (vi , vi ) − ui (v
′
i , v

′
i )

≤ (vi − v′
i )[Ev j Xi (vi , v j ) − αa Ev j X j (vi , v j )]. (9)

Then the agent reveals truthfully if:

Ev j

[
Xi (v

′
i , v j ) − αa X j (v

′
i , v j )

] ≤ Ev j

[
Xi (vi , v j ) − αa X j (vi , v j )

] ∀ v′
i ≤ vi .

(IC2)

(8) must hold for all v′
i and all vi = v′

i + δ with δ > 0. Since Ev j Xi (vi , v j ) −
αa Ev j X j (vi , v j ) is increasing in vi , we can take the Riemann integral. Then, the
agent reveals truthfully if we also have:

ui (vi ) − ui (v
′
i ) =

vi∫

v′
i

Ev j [Xi (s, v j ) − αa X j (s, v j )]ds ∀ v′
i ≤ vi . (IC1)

To complete the proof, we need to verify that (IC1) and (IC2) imply (7). Suppose
v′

i ≤ vi , then given (IC1) and (IC2), we have:

ui (vi , vi ) = ui (v
′
i , v

′
i ) +

vi∫

v′
i

Ev j [Xi (s, v j ) − αa X j (s, v j )]ds

≥ ui (v
′
i , v

′
i ) +

vi∫

v′
i

Ev j [Xi (v
′
i , v j ) − αa X j (v

′
i , v j )]ds

= ui (v
′
i , v

′
i ) + (vi − v′

i )[Ev j Xi (v
′
i , v j ) − αa Ev j X j (v

′
i , v j )].
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The seller maximizes her expected revenue (the sum of transfers) under constraints
(IC1) and (IC2) (to induce truth-telling) and the remaining constraints (IR), (F0) and
(F1).31 ��

Appendix 2

The proof is obtained by inspection of (3) and (4).
When αa > 0, we can only show that d

dvi
ui (vi ) = Ev j [Xi (v)] − αa Ev j [X j (v)] <

Ev j [Xi (v)], and therefore ui (vi ) may not be monotonic. However, d
dvi

�i (vi ) =
Ev j [Xi (v)] + αa(1 − Ev j [X j (v)]) > 0 which proves that the rent is increasing.
The binding type is v.

When α ≤ −1, we have d
dvi

ui (vi ) = Ev j [Xi (v)] − αa Ev j [X j (v)] > 0 and
d

dvi
�i (vi ) = Ev j [Xi (v)] + αa(1 − Ev j [X j (v)]) < 0. The rent is decreasing and the

binding type is v.
When α ∈ (−1, 0), we have d

dvi
ui (vi ) = Ev j [Xi (v)] − αa Ev j [X j (v)] > 0 but

d
dvi

�i (vi ) ≷ 0. The rent may not be monotonic and the binding type may be interior.
To economize notations, let H(vi ) = Ev j [Xi (vi , v j )−αa X j (vi , v j )] from now on.

Appendix 3

The mechanism such that the seller keeps the good if maxi {π∗
i (v)} < 0 and allocates

it to the bidder with the highest π∗
i (v) otherwise maximizes P∗ under (F0) and (F1).

We have π∗
i (v) > π∗

j (v) if vi > v j . Moreover, when the cutoff r∗
i (v j ) is interior,

we have

[
d

dvi

[
vi − 1 − F(vi )

f (vi )

]
|r∗

i
− αb

]
d

dv j
r∗

i (v j ) − αa
d

dv j

[
v j − 1 − F(v j )

f (v j )

]
= 0

proving that r∗
i (v j ) is increasing in v j under Assumption 2a(i). We now show that

(IC2) is satisfied.
Curves r∗

i (v j ) and r∗−1

j (v j ) cross at v̆. ∂
∂v j

r∗
i (v j )|vo ≤ 1 when αa < 1 and αb < 0,

and ∂
∂v j

r∗
i (v j )|v̆ ≥ 1 when αa > 1 and αb > 0. In both cases v̆ is unique.32 We work

under that assumption (Assumption 3 in the text).
Case 1: When αa < 1 and αb < 0, r∗

j (vi ) ≷ r∗−1

i (vi ) for all vi ≶ v̆. There also

exists v′ such that r∗−1

i (v′) = v. When vi < v′, Ev j Xi (v) = 0 and Ev j X j = 1 −
F(r∗

j (vi )). When vi ∈ [v′, v̆], Ev j Xi (v) = F(r∗−1

i (vi )) and Ev j X j = 1 − F(r∗
j (vi )).

When vi > v̆, then Ev j Xi (v) = F(vi ) and Ev j X j (v) = 1 − F(vi ). Then (IC2) is

31 Note that the proof is similar to Myerson (1981) except that we do not provide a sufficient condition for
(IR) to hold at this stage.

32 Note that ∂
∂v j

r∗
i (v j )|v̆ = αa h

′
h′−αb

where h
′ = ∂

∂vi
[vi − 1−F(vi )

f (vi )
]|v̆ .
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satisfied everywhere. Last ṽ(A∗) < v because H(v) = 1, and ṽ(A∗) > v if H(v) =
−αa(1 − F(r∗

j (v)) < 0, that is if r∗
j (v) �= v.

Case 2: Whenαa > 1 andαb > 0, r∗
j (vi ) ≶ r∗−1

i (vi ) for allvi ≶ v̆. There existsv′ > v̆

such that r∗
j (v

′) = v. When vi < v̆, Ev j Xi (v) = F(vi ) and Ev j X j = 1−F(vi ). When

vi ∈ (v̆, v′), Ev j Xi (v) = F(r∗−1

i (vi )) and Ev j X j = 1 − F(r∗
j (vi )). When vi > v′,

then Ev j Xi (v) = F(r∗−1

i (vi )) and Ev j X j (v) = 0. Again (IC2) is satisfied everywhere.

Last ṽ(A∗) > v because H(v − αa < 0 and ṽ(A∗) < v if H(v) = F(r∗−1

i (v)) > 0,

that is if r∗−1

i (v) �= v.
Last, let r F

i (v j ) = min{vi |π F
i (vi , v j ) � 0}. For all v j , there exists q(v j ) such that

π∗
i (q(v j ), v j ) = π F

i (q(v j ), v j ) and r∗
i (v j ) ≶ r F

i (v j ) when vi ≷ q(v j ). ��

Appendix 4

The mechanism such that the seller keeps the good if maxi {π∗∗
i (v)} < 0 and allocates

it to the bidder with the highest π∗∗
i (v) maximizes P∗∗ under (F0) and (F1). We have

π∗∗
i (v) > π∗∗

j (v) if vi < v j (under Assumption 4). When the cutoff is interior,

[
d

dvi

[
vi + F(vi )

f (vi )

]
|r∗∗

i
− αb

]
d

dv j
r∗∗

i (v j ) − αa
d

dv j

[
v j + F(v j )

f (v j )

]
= 0

showing that r∗∗
i (v j ) is decreasing in v j under Assumption 2b. We need to check now

that (IC2) is satisfied.
Curves r∗∗

i (v j ) and r∗∗−1

j (v j ) cross at v̆. We have d
dvi

[vi + F(vi )
f (vi )

]|v̆ = h, then
∂

∂v j
r∗∗

i (v j )|v̆ = αah
h−αb

< −1, which ensures that v̆ is unique. For all vi ≶ v̆, r∗∗
j (vi ) ≷

r∗∗−1

i (vi ). When vi < v̆, Ev j X∗∗
j = 0 and Ev j X∗∗

i = 1 − F(r∗∗−1

i (vi )). When
vi > v̆, Ev j X∗∗

i = 1 − F(vi ) and Ev j X∗∗
j = F(vi ) − F(r∗∗

j (vi )). Therefore, (IC2) is
satisfied everywhere.

Last, π∗∗
i (v) > π F

i (v) and therefore r∗∗
i (v j ) < r F

i (v j ). ��

Appendix 5

The proof proceeds in two steps.
Step 1: we first show that, provided it exists, the equilibrium pure symmetric bidding
strategy is monotonically increasing or decreasing in vi as a function αa .

In a second price sealed bid auction, i’s utility is ui (vi , bi ) = vi − b j if bi > b j

and −αi (vi , v j ) if bi < b j . Let us denote by b(vi ) the bidding strategy of an agent
with valuation vi . We look for a pure strategy bayesian equilibrium such that b(·) is
monotonic. The strategy satisfies:

b(vi ) ∈ arg max
∫

{v j |b(v j )<bi }
(vi − b(v j ))dF(v j ) −

∫

{v j |b(v j )>bi }
αi (vi , v j )dF(v j ).
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Consider two types v′
i and v′′

i . Equilibrium requires that an agent with type v′
i prefers

b(v′
i ) to b(v′′

i ) and an agent with type v′′
i prefers b(v′′

i ) to b(v′
i ). Moreover,

ui (v
′
i , b(v′′

i )) = ui (v
′′
i , b(v′′

i )) +
∫

{v j |b(v j )<b(v′′
i )}

(v′
i − v′′

i )dF(v j )

−
∫

{v j |b(v j )>b(v′′
i )}

αa(v′
i − v′′

i )dF(v j ).

Then in equilibrium, we have ui (v
′
i , b(v′

i )) � ui (v
′
i , b(v′′

i )) which is equivalent to:

ui (v
′
i , b(v′

i )) − ui (v
′′
i , b(v′′

i )) �
∫

{v j |b(v j )<b(v′′
i )}

(v′
i − v′′

i )d F(v j )

−
∫

{v j |b(v j )>b(v′′
i )}

αa(v′
i − v′′

i )d F(v j ).

Similarly, ui (v
′′
i , b(v′′

i )) � ui (v
′′
i , b(v′

i )) implies that:

ui (v
′
i , b(v′

i )) − ui (v
′′
i , b(v′′

i )) ≤
∫

{v j |b(v j )<b(v′
i )}

(v′
i − v′′

i )dF(v j )

−
∫

{v j |b(v j )>b(v′
i )}

αa(v′
i − v′′

i )dF(v j ).

Overall, equilibrium bids are such that

∫

{v j |b(v j )<b(v′′
i )}

(v′
i − v′′

i )dF(v j ) −
∫

{v j |b(v j )>b(v′′
i )}

αa(v′
i − v′′

i )dF(v j )

≤
∫

{v j |b(v j )<b(v′
i )}

(v′
i − v′′

i )dF(v j ) −
∫

{v j |b(v j )>b(v′
i )}

αa(v′
i − v′′

i )dF(v j ).

Suppose v′′
i < v′

i , the last inequality implies that

Prob(b(v j ) < b′′
i ) − αaProb(b(v j ) > b′′

i ) ≤ Prob(b(v j ) < b′
i ) − αaProb(b(v j ) > b′

i ).

(9)

The previous equation writes simply as:

(1 + αa)Prob(b(v j ) < b′′
i ) ≤ (1 + αa)Prob(b(v j ) < b′

i ).
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Thus, if 1 +αa > 0, we have Prob(b(v j ) < b′′
i ) ≤ Prob(b(v j ) < b′

i ) and b′′
i < b′

i , i.e.
b(v) is increasing in v. If 1+αa < 0, we have Prob(b(v j ) < b′′

i ) > Prob(b(v j ) < b′
i )

and b′′
i > b′

i , i.e. b(·) is decreasing in v. When αa = −1, ui (v
′
i , b(v′′

i )) =
ui (v

′′
i , b(v′′

i )) + v′
i − v′′

i and ui (v
′′
i , b(v′

i )) = ui (v
′
i , b(v′

i )) + v′′
i − v′

i . Therefore, in
equilibrium we must have ui (v

′
i , b(v′

i )) = ui (v
′′
i , b(v′′

i ))+ (v′
i −v′′

i ) but the variations
of the bidding strategies are unclear.
Step 2: we now characterize the bidding strategy and show existence. When 1 +αa >

0, i’s utility is:

u(vi , bi ) =
b−1(bi )∫

v

(vi − b(s)) f (s)ds −
v∫

b−1(bi )

αi (vi , s) f (s)ds.

The optimal bid is such that

∂

∂bi
u(vi , bi ) =

[
vi − b(b−1(bi )) + αi (vi , b−1(bi ))

]
f (b−1(bi ))b

−1′
(b1) = 0.

At the symmetric Nash equilibrium, we must have b−1(bi ) = vi , and therefore the
optimal bidding strategy is b(vi ) = bi = vi + αi (vi , vi ). It exists if it is increasing,
i.e. if 1 + αa + αb � 0.

When 1 + αa < 0, i’s utility is:

u(vi , bi ) =
v∫

b−1(bi )

(vi − b(s)) f (s)ds −
b−1(bi )∫

v

αi (vi , s) f (s)ds.

The optimal bid is such that

∂

∂bi
u(vi , bi ) = −

[
vi − b(b−1(bi )) + αi (vi , b−1(bi ))

]
f (b−1(bi ))b

−1′
(b1) = 0.

Again, at the symmetric Nash equilibrium, we must have b−1(bi ) = vi , and there-
fore the optimal bidding strategy is b(vi ) = bi = vi + αi (vi , vi ).33 It exists if it is
decreasing, i.e. if 1 + αa + αb ≤ 0.

When αa = −1, the variations of the bidding function are unclear. If i expects
his rival to use an increasing strategy, then his optimal bid is b(vi ) = αbvi + γ . It is
increasing when αb > 0. If i expects his rival to use a decreasing strategy, his optimal
bid is again b(vi ) = αbvi +γ and it is decreasing when αb < 0. If αb = 0, a symmetric
equilibrium is b(vi ) = γ for all vi . Indeed, if i expects j to bid b(v j ) = ζ for all v j ,
then it is optimal to bid bi > ζ if ζ < γ, bi < ζ if ζ > γ and any bid gives the same
expected payoff when ζ = γ . ��

33 For completion, note that at equilibrium ∂2u
∂b2

i
≤ 0 in both cases.
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Appendix 6

Step 1: we first show that the optimal mechanism can be implemented by a modified
second price sealed bid auction, only if (i) bidding strategies are pure and monoton-
ically increasing or decreasing in valuations and (ii) the reserve price faced by each
agent is monotonically increasing or decreasing in the bid of the rival.

In A∗∗, i gets the good when vi > r∗∗
i (v j ) and vi < v j . We have vi < v j ⇔

b−1(bi ) < b−1(b j ). Then, vi < v j ⇔ bi > b j if and only if b(·) is strictly decreasing
at any vi such that there is a positive probability of allocating the good to i in the
optimal mechanism. In that case vi > r∗∗

i (v j ) ⇔ b−1(bi ) > r∗∗
i (b−1(b j )) ⇔ bi <

b ◦ r∗∗
i ◦ b−1(b j ). Thus the seller must allocate the good to i if bi < ri (b j ) with

ri = b ◦r∗∗
i ◦b−1(b j ) and ri (b j ) is decreasing in b j . By construction, r−1

i (b̆) = r j (b̆)

at b̆ = b(v̆).
Similarly, in A∗, i gets the good when vi > r∗

i (v j ) and vi > v j . In that case
b(·) must be strictly increasing and i gets the good when bi > ri (b j ) with ri =
b ◦ r∗

i ◦ b−1(b j ) increasing in b j . Again, r−1
i (b̆) = r j (b̆) at b̆ = b(v̆).

Step 2: We show that the seller must resort to additional entry fees. In a second price
sealed bid auction, the expected payoff of agent i is

ui (vi , b(vi )) = E{v j |i wins}(vi − b(v j )) − E{v j | j wins}αi (vi , v j ).

At equilibrium, dui (vi ,b(vi ))
dvi

= Prob(i wins)−αaProb( j wins). If the reserve prices and

bidding strategies implement the optimal solution, then Prob(i wins) = Ev j X i (vi , v j )

and Prob( j wins)) = Ev j X j (vi , v j ) with Xk = {X∗
k , X∗∗

k } k = i, j . Therefore, the
expected utility in the auction is:

ui (vi , b(vi )) =
vi∫

v

(
Ev j X i (s, v j ) − αa Ev j X j (s, v j )

)
ds + ui (v, b(v)).

For the payments to coincide, the seller sets c such that ui (vi , b(vi ))+c = ui (vi ) where
ui (vi ) is the equilibrium utility in the optimal auction (by inspecting the equations, it
is easy to see that c is an amount independent of vi ). ��

Appendix B

In what follows, we assume that agent i faces the reserve price ri (b j ). Also, let b̌ be
the point such that ri (b̌) = r−1

j (b̌).
Consider the case αa ≤ −1. The reserve price is decreasing in the bid. Suppose

bidder i expects the rival to bid according to a decreasing bidding function. For all
bi < b̆, the expected payoff of bidder i is
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ui (vi , bi ) =
1∫

b−1(bi )

(vi − b(v j ))dv j − (αavi + γ )
(

b−1(bi ) − b−1(r j (bi ))
)
.

Taking the first-order condition and using the fact that r j (bi ) = b ◦ r∗∗
j ◦ b−1(bi ), the

optimal bid solves

vi − bi + αavi + γ − (αavi + γ )
dr∗∗

j

dvi |b−1(bi )

= 0.

Given r∗∗
j (vi ) = αavi + γ , the optimal bid conditional on bidding below b̆ is b(vi ) =

vi +αavi + γ − (αavi + γ )αa . It is decreasing in vi and is defined only for valuations
such that vi > b−1(b̆). For all bi > b̆, the expected payoff of bidder i is

ui (vi , bi ) =
1∫

b−1(r−1
i (bi ))

(vi − b(v j ))dv j .

using the same technique as before, the optimal bid is b(vi ) = r∗∗
i (vi ). It is decreasing

in vi and is defined only for valuations such that vi < b
−1

(b̆). Suppose b
−1

(b̆) <

b−1(b̆). For all vi < b
−1

(b̆),

dui (vi , b(vi ))

dvi
= 1 − b−1(r−1

i (b(vi ))) <
dui (vi , b̆)

dvi
= 1 − b−1(r−1(b̆))

therefore ui (vi , b(vi )) � ui (vi , b̆) and it is optimal to bid b(vi ). For all vi > b−1(b̆),

dui (vi , b(vi ))

dvi
= (1 − vi − αa(vi − b−1(r j (b(vi ))) >

dui (vi , b̆)

dvi
= 1 − b−1(r−1(b̆))

therefore ui (vi , b(vi )) � ui (vi , b̆) and it is optimal to bid b(vi ). A similar argument

applies when b
−1

(b̆) > b−1(b̆). Overall, the optimal bidding strategy takes the form

b(vi ) =

⎧⎪⎨
⎪⎩

b(vi ) vi < min{b−1
(b̆), b−1(b̆)}

b̆ vi ∈ (min{b−1
(b̆), b−1(b̆)}, max{b−1

(b̆), b−1(b̆)}) = M

b(vi ) vi > max{b−1
(b̆), b−1(b̆)}.

Given it is only weakly decreasing, it cannot implement the optimal mechanism.
Assume the seller imposes a tax τ on bidders who obtain the good and bid below b̆,
the expected payoff of bidder i is
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ui (vi , bi ) =
1∫

b−1(bi )

(vi − τ − b(v j ))dv j − (αavi + γ )
(

b−1(bi ) − b−1(r j (bi ))
)

yielding a new bidding function b̌(vi ) = vi +αavi +γ −(αavi +γ )αa −τ = b(vi )−τ ,

decreasing in vi and is defined for valuations such that vi > b̌
−1

(b̆). To implement

the optimal mechanism, we need to choose τ such that b̌
−1

(b̆) = b
−1

(b̆) = v̆. In
other words, v̌ is the point at which the two bidding strategies cross. The optimal tax
is τ = b(v̆) − b(v̆). Overall, the optimal bidding strategy is

b∗∗(vi ) =
{

b(vi ) vi < v̆

b̌(vi ) vi > v̆.

When αa > 0, we use the same techniques. Some of the steps are omitted. When
bi < b̆, the optimal bidding strategy solves

(vi − r−1
i (bi ))

dr∗−1

i

dvi |b−1(bi )

+ (αavi + γ )
dr∗

j

dvi |b−1(bi )

= 0,

where
dr∗−1

i
dvi |b−1(bi )

= 1/αa and
dr∗

j
dvi |b−1(bi )

= αa . Differentiating the first-order con-

dition and using the fact that ri , r∗
i and r∗

j are increasing, the bidding strategy is also

increasing. Let us denote it by b(vi ). When bi > b̆, the optimal bidding strategy is
b(vi ) = vi + αavi + γ . It is increasing in vi .

b(vi ) =

⎧⎪⎨
⎪⎩

b(vi ) vi < min{b−1
(b̆), b−1(b̆)}

b̆ vi ∈ M

b(vi ) vi > max{b−1
(b̆), b−1(b̆)}.

Here again, the seller must distort the allocation to make sure the overall bidding func-
tion is strictly increasing. A possibility is to impose a tax τ on agents who obtain the

good and bid above b̆. This yields a new bidding function b̌(vi ) = vi + αavi + γ − τ .
The equilibrium bidding function is

b∗(vi ) =
{

b(vi ) vi < v̆

b̌(vi ) vi > v̆.
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