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Abstract

One of the core questions in Neuro-economics is to determine where value is rep-
resented. To date, most studies have focused on simple options and identified the
ventromedial prefrontal cortex (VMPFC) as the common value region. We report
the findings of an fMRI study in which we asked participants to make pairwise com-
parisons involving options of varying complexity: single items (Control condition),
bundles made of the same two single items (Scaling condition) and bundles made of
two different single items (Bundling condition). We construct a measure of choice
consistency to capture how coherent the choices of a participant are with one an-
other. We also record brain activity while participants make these choices. We find
that a common core of regions involving the left VMPFC, the left dorsolateral pre-
frontal cortex (DLPFC), regions associated with complex visual processing and the
left cerebellum track value across all conditions. Also, regions in the DLPFC, the ven-
trolateral prefrontal cortex (VLPFC) and the cerebellum are differentially recruited
across conditions. Last, variations in activity in VMPFC and DLPFC value-tracking
regions are associated with variations in choice consistency. This suggests that value
based decision-making recruits a core set of regions as well as specific regions based on
task demands. Further, correlations between consistency and the magnitude of signal
change with lateral portions of the PFC suggest the possibility that activity in these
regions may play a causal role in decision quality.
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1 Introduction

Evidence from many lesion and fMRI studies converge in identifying the medial orbito-

frontal cortex (MOFC) or sometimes more narrowly, the ventromedial prefrontal cortex

(VMPFC) as a critical region in valuation when deciding between alternatives (Rangel

et al., 2008; Henri-Bhargava et al., 2012; Fellows and Farah, 2007; Lee et al., 2021) or

how much to pay for a good or item (Chib et al., 2009; Hare et al., 2008; Plassmann

et al., 2007). This finding has been consistently reported in studies involving food items,

trinkets and money (Levy and Glimcher, 2012; Clithero and Rangel, 2013b; Bartra et al.,

2013). Most studies however have focused on choices involving single items, as opposed

to complex options made of several single items, or bundles. Among the few studies

involving bundles, the VMPFC has been associated with the ability to make consistent

choices between bundles (Camille et al., 2011) and the MOFC has been shown to reflect the

difference in subjective value between monetary options and bundled options (FitzGerald

et al., 2009). In other forms of complex options, such as multi-attribute options, activity

in the VMPFC reflected also the value of the combined items (Kahnt et al., 2011; Pelletier

et al., 2021).

A recent study reported that our ability to make choices consistent with one another

depends critically on the complexity of options (Brocas et al., 2019a). Participants ev-

idenced more inconsistency when making a series of choices between bundles involving

three items compared to choices between bundles involving two items. This increased

inconsistency was linked to working memory and it was found more significant in older

adults. It seems intuitive that complex options are difficult to evaluate. If the constituent

items of a bundle are valued sequentially, working memory, which is responsible for the

short-term mental maintenance and manipulation of information, may be required to hold

values prior to integration. If a person is required to consume a bundle they choose, value

calculations must take into account not only the value of constituents but also any ex-

ternality of consuming them together. Such task may not differ from other difficult tasks

that rely on executive function.

Studies have demonstrated that activation is evoked in the dorsolateral prefrontal

cortex (DLPFC) during tasks that tax executive function (Goldberg et al., 1998; Osherson

et al., 1998; Goel et al., 1997; Baker et al., 1996; Berman et al., 1995; Nichelli et al., 1994;

Petrides, 1994). Activation studies have shown that dorsal frontal regions are activated

during tasks that are experienced as difficult (Braver et al., 1997; Cohen et al., 1994, 1997;

Monterosso et al., 2007; Luo et al., 2012), and during task switching (Dove et al., 2000),

and the DLPFC is differentially recruited as tasks become more complex (Carlson et al.,

1998; Braver et al., 1997; Cohen et al., 1997; Baker et al., 1996; Demb et al., 1995; Christoff
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et al., 2001). This relationship extends to tasks requiring the explicit representation and

manipulation of knowledge, where the ability to reason relationally is essential (Kroger

et al., 2002). The DLPFC is also implicated in evidence accumulation in perceptual

decisions and is differentially activated across easy and complex decisions (Heekeren et al.,

2004, 2006).

The role of DLPFC in value-based decision making has not been clearly established.

It is sometimes reported to be activated and, when it is reported, its involvement is

interpreted in the context of the question of interest. For instance, the DLPFC has been

found to encode the variability of multi-attribute objects (Kahnt et al., 2011) and to

be more active when trade-offs between attributes are required (McFadden et al., 2015).

In food choices, the DLPFC has been reported to modulate value (Camus et al., 2009;

Hare et al., 2011a,b; Gluth et al., 2012; Sokol-Hessner et al., 2012; Chen et al., 2018)

and craving (Fregni et al., 2008; Hall et al., 2017), to be involved in self regulation and

self control (Hutcherson et al., 2012; Harris et al., 2013; Chen et al., 2018), and to be

associated with eating disorders (Brooks et al., 2011; Foerde et al., 2015; He et al., 2019;

Lowe et al., 2019; Dalton et al., 2020). It has also been linked to addictive behavior (Koob

and Volkow, 2010; Nakamura-Palacios et al., 2016). The DLPFC has also been found to

be functionally connected with the value coding regions in self-control paradigms (Hare

et al., 2009) and in multi-attribute paradigms (Rudorf and Hare, 2014). Taken together,

the evidence places the DLPFC at the core of value-based decision making when multiple

dimensions (e.g. taste, health, future outcomes) must be integrated to form subjective

value (Brocas and Carrillo, 2021). Last, the DLPFC is significantly more active when

options involve a conflict to be resolved (Baumgartner et al., 2011; de Wit et al., 2009).

Taken together, these findings suggest that a potential role of DLPFC is to support value

calculation (perhaps in various ways) when choices are complex.

Here we report the results of an fMRI study in which participants were asked to

choose between real food options involving single item options and bundled items options.

Bundles varied in complexity and consisted of either the same two single items or two

different single items. In each condition, we constructed a measure of consistency to

reflect how coherent choices were with one another. Because we were not interested in

down regulation or dysfunctions of the value system, we only recruited participants who

did not have any food restrictions and were not on a diet. We also excluded junk food.

We hoped to replicate the standard results obtained in the literature in the case of single

items comparisons and to study the differential effect of bundling. Given the evidence

reported earlier, we hypothesized that bundles made of different items would require more

cognitive effort to be evaluated and greater choice consistency would be linked to DLPFC

activity. Bundling made of the same two options were introduced to control for quantity
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effects. We were specifically interested in neural activity and value-tracking as a function

of decision complexity. For this reason, participants were always asked to choose between

one option, that varied across trials, and a fixed (reference) option (a design similar to

Hare et al. (2009)). We specifically tracked activity associated with the computation of

the subjective value of the varying option. Our design allows us to address the following

questions: (1) Is there a common value tracking region when options are simple and

complex? (2) What are the neural correlates of subjective value as a function of the

complexity of items (single, scaled or bundled)? (3) Does valuation of multiple goods

recruit networks implicated in attention and working memory? (4) Do consistent choices

across conditions have a neural signature?

2 Materials and methods

2.1 Subjects

Sixty eight healthy young adults (mean age 22 years old, 36 female and 32 male, all right-

handed) were recruited from the Los Angeles Behavioral Economics Laboratory’s subject

pool at the University of Southern California. The Institutional Review Board of USC

approved the study. Subjects could participate if they satisfied the standard eligibility

criteria for fMRI studies (no cognitive disorder or psychiatric condition, no medication

affecting cognition, no history of seizure, no metal implants). We excluded subjects who

reported to have food allergies, food restrictions or to be picky eaters. All participants

received a $50 show-up fee for participating. They were also rewarded with one of their

choices, selected randomly at the end of the session. Eight participants were excluded

because of incomplete data collection or excessive head movement during scanning.

2.2 Procedure

Participants were instructed to not eat for at least 4 hours before the experimental session.

They were also instructed that they would have to stay after the session to consume what

they had obtained and that they could not take any of the food items with them when

they leave. This was implemented to make sure participants were hungry and thinking

carefully about their choices during the session. The procedure was explained beforehand

so that each participant knew that their reward would be based on their choices, and they

should make their best decision in every trial.

Each participant was asked to rank 30 single item options by order of preference. Each

option was a small food serving. All were calibrated to represent between 20 and 50

calories and to look visually similar. The actual servings were displayed in the experi-
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mental room. Participants were given cards, each showing the picture of one serving, and

they ranked options by placing cards on a long table. This ranking was used to create

40 bundles, 20 combinations of 2 same single items, and 20 combinations of 2 different

single items. The participant was then asked to include those bundles in their previous

ranking. Asking participants to rank all options allowed us to abstract from non linearity

effects (complementarity or substitutability between single items) when value was com-

bined. We then selected 11 single item options, 10 combinations of 2 same single items

and 10 combinations of 2 different single items to include in the experimental task, where

each participant made binary choices in the scanner. One of the 11 single item options was

a reference option, denoted hereafter by REF. Choices were divided into three conditions

(see Fig.1(A)): CONTROL, SCALING and BUNDLING. Each participant made choices

in all three conditions. In each of the CONTROL trials, the participant had to choose

between REF and one of the 10 remaining single items. In each of the SCALING trials,

the participant had to choose between REF and one of the 10 combinations of 2 same

single items. In each of the BUNDLING trials, the participant had to choose between

REF and one of the 10 combinations of 2 different single items. SCALING trials were

included to control for the effect of quantity. In all cases, REF was off-screen, it was the

same for each trial and it was shown to the participant at the beginning of the experi-

ment. The other option was on-screen and it was displayed at the beginning of each trial.

(see Fig.1(B)). Each individual trial was repeated 9 times for a total of 90 trials in each

condition. Therefore, each participant made 270 choices in the scanner. In each trial, the

circles at the bottom of the screen told the participant what button selected which option,

the solid circle always representing REF. The button mappings were randomly assigned

for each trial.1 When the participant responded, the circle representing the chosen option

was framed in a square to let the participant know that the their answer was recorded.

The screen then advanced to a fixation cross for the remainder of the trial. The fMRI task

was optimized for detecting neural responses. We used Optsec2, a tool that automatically

schedules events for rapid presentation event-related fMRI experiments. Trials order and

inter-stimulus intervals were optimized for task regressor estimation efficiency (Dale, 1999)

and organized into 5 runs.

We chose the options in order to ensure that each of the three conditions CONTROL,

SCALING and BUNDLING had symmetrical sets of low, medium and high on-screen value

1Subjects had button boxes in each hand when they were in the scanner. They were instructed to
make choices by pressing a button in the hand corresponding to the option, as represented by the circle,
they wanted. For example, if they wanted the reference option and the solid circle was on the right side
of the screen in that trial, they could select it by pressing a button in their right hand. If they wanted
the on-screen option instead, they could select it by pressing a button corresponding to the hollow circle,
which in that case would be a button in their left hand.
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options centered around REF. Note that, for a bundle to be less valuable than REF, the

latter needed to be more valuable than the single items making the bundle. Therefore, by

construction, REF was among the most valuable single items. To separate value specific

activity from task specific activity, we also made sure that the distribution of value was

similar across conditions. Specifically, for each participant, we used an adapted genetic

algorithm that produced three ”populations” of options (for CONTROL, SCALING and

BUNDLING) satisfying criteria ensuring similarity across populations in terms of spread

of values and distribution around REF (see Fig.1(C)).

Note that because we wanted to equalize distributions, we did not necessarily end

up selecting bundles made of single items that were also selected: many options in the

SCALING and BUNDLING conditions contain single items that are not retained for the

CONTROL condition, and many single items retained for the CONTROL condition are

not part of any option in the SCALING and BUNDLING conditions. This precludes us

from studying the aforementioned non linearity effects, or how the value of bundles of

scaled items relate to the value of individual items.

2.3 MRI data acquisition

Neuroimaging data was collected using the 3T Siemens MAGNETOM Tim/Trio scanner

at the Dana and David Dornsife Cognitive Neuroscience Imaging Center at USC with

a 32-channel head-coil. Participants were laid supine on a scanner bed, viewing stimuli

through a mirror mounted on head coil. Blood oxygen level-dependent (BOLD) response

was measured by echo planar imaging (EPI) sequence with PACE (prospective acquisition

correction) (TR = 2 s; TE = 25 ms; flip angle= 90; resolution = 3 mm isotropic; 64 x

64 matrix in FOV = 192 mm). A total of 41 axial slices, each 3 mm in thickness were

acquired in an ascending interleaved fashion with no interslice gap to cover the whole brain.

Slices were acquired on the anterior-posterior-commissure plane (Deichmann et al., 2003).

Anatomical images were collected using a T1-weighted three-dimensional magnetization

prepared rapid gradient echo (MP-RAGE with TI = 900 ms; TR=1.95 s; TE: 2260 ms; flip

angle=9; resolution = 1 mm isotropic; 256 × 256 matrix in FOV = 256-mm) primarily for

localization and normalization of functional data. These scans were co-registered with the

participant’s mean EPI images. These images were averaged together to permit anatomical

localization of the functional activations at the group level.

2.4 MRI data preprocessing

Image analysis was performed using Functional Magnetic Resonance Imaging of the Brain

(FMRIB) Software Library (FSL) (Jenkinson et al., 2012) algorithms organized in a nipype
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CONTROL SCALING BUNDLING
A

SCANNER TASK

Off-Screen REF

B

C

Figure 1: Experimental Design. A. Each trial was a choice between the reference
item (REF) and a food option in either of 3 conditions: CONTROL (one single item),
SCALING (two same single items) or BUNDLING (two different single items). B. Only
the latter food option was presented on screen. All trials were self-paced. C. We designed
the task to best approximate a distribution of options centered around a REF item (orange)
in each task CONTROL (red), SCALING (dark blue) and BUNDLING (light blue). The
x-axis represents ranks.

pipeline. Computation for the work described in this paper was supported by the Uni-

versity of Southern California’s Center for High-Performance Computing (hpcc.usc.edu).

The structural images were skull-stripped then aligned and spatially normalized to the

standard Montreal Neurological Institute (MNI) EPI template. The functional images

were motion and time corrected. They were spatially smoothed using a Gaussian Kernel

with a full width at half-maximum of 5mm. We also applied a high-pass temporal filter

using a filter width of 120s.
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2.5 Behavioral analysis

As previously noted, participants were asked to make choices between two snack options.

The first option was always the same off-screen reference option denoted by REF while the

second option was an on-screen variable option V ARj (j = {1, ..., N}). We constructed a

Random Utility Model (McFadden et al., 1973; Train, 2009; Clithero and Rangel, 2013a)

in which we assumed that the utility derived by option V ARj depended on the value of the

food snack and a stochastic unobserved error component εj . Formally, u(REF ) = v0 + ε0
and u(V ARj) = vj + εj . In this model, the probability of choosing option V ARj is

therefore Pj = Pr[ε0 − εj < vj − v0]. Assuming that the error terms are independent and

identically distributed and follow an extreme value distribution with cumulate density

function F (εk) = exp(−λe−εk) for all k = 0, j, the probability that the participant chooses

option V ARj is the logistic function

Pj =
1

1 + e−λ(vj−v0)

The model predicts that choices in which values are close yield a 50% chance of choosing

one over the other, while choices that are far apart tend to certain outcomes. The model

is then used to construct a likelihood function based on the above probabilities and we

applied Maximum Likelihood Estimation techniques to retrieve parameters vj given the

observed choices for each individual. In practice, this procedure was implemented in

Matlab (MathWorks) with standard algorithms, which apply the likelihood function over

the entire data, and estimate the value parameters that best match the observed choices.

Based on these retrieved values, we assigned implicit rankings across all options (V),

and across options in the CONTROL condition (CV), SCALING condition (ScV) and

BUNDLING condition (BV).

A few remarks are in order. First, because the value of the reference option is the same

across all trials, parameterizing the subjective value of the on-screen option or the subjec-

tive value of the difference between the two options (value of on-screen option vj - value

of off-screen reference option v0) is the same. We can therefore without loss of generality

interpret vj as either the value or the relative value of the on-screen option. Second, the

model is equivalent to a softmax representation: the probability of choosing an option is

a softmax function with temperature 1
λ . This is the case only because the distribution is

an extreme value distribution. Third, our model shares features with models that focus

on entropy (Goñi et al., 2011; Bernacer et al., 2019). This is the case because there is a

mathematical connection between entropy and the Random Utility Model (Matějka and

McKay, 2015), as there is one between entropy and softmax (which is equivalent to the

Boltzmann distribution and maximizes entropy). Last, ideally, we would like to estimate
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both value parameters and temperature. However, λ is not identified in this simple model

(we could rewrite λvj as Vj and λv0 as V0 without affecting the model), making it impos-

sible to estimate both types of parameters at the same time. To estimate subjective value,

we normalize λ to 1.

In principle, if a subject’s choices are well represented by the Random Utility Model,

we should observe that most choices are consistent with estimates and implicit rankings.

For each individual, we computed the percentages of choices that were consistent with the

value estimates (and henceforth with the implicit rankings) across all conditions and within

each condition. We call these percentages Consistency Rates. Note that because implicit

ranks are only best estimates, a trial that contradicts the ranking and is categorized as

inconsistent may not contradict the true underlying preferences (which are not observed).

This means that consistency makes sense as an aggregate measure across choices, but

it cannot be used to classify individual trials. Note that there is a connection between

Consistency Rates and consistency across trials (in a revealed preference argument sense).

When a person never reverts their choices, the value estimates reflect no reversals and

the choices all agree with the estimates. The estimates reflect how easy/difficult it is to

rank an option with respect to the reference option in a way that matches the proportions

of reversals. The Consistency Rate aggregates this information across all options. Last,

there is also a relationship between the overall Consistency Rate and λ. The Random

Utility Model predicts that reversals are more likely when vj is close to v0 to an extent

modulated by λ. If behavior is consistent with this premise, a low consistency rate is

driven by frequent reversals when values are close, which corresponds to a high λ. Said

differently, Consistency Rates provide an ex post diagnostic of the uncertainty the person

faces to compute subjective values.

2.6 Analysis of reaction times

We recorded the onset of the stimulus and the time at which a choice was made in each

trial. We looked at whether trials deemed to be more difficult, as measured by a smaller

distance between the estimated value of the on-screen and off-screen options, were also

taking longer. We also looked for systematic differences across conditions and across the

type of choices (on screen vs. off-screen). For each participant, we computed the mean

Reaction Time it took them to deliberate in each of the three conditions. These measures

were designed to analyze individual differences across conditions.
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2.7 MRI data analysis

We estimated several general linear models (GLMs) of BOLD responses. Each aspect of

the task was encoded in a regressor for the GLM. To identify what signal was associated

with a particular condition, we constructed indicator regressors that take value 1 whenever

the participant is performing a trial within a condition and 0 otherwise. To identify the

neural activity associated with the subjective value of the on-screen option, we created

a parametric regressor equal to the value proxy (details below) of the on screen option.

The models also included motion parameters (regressors for translation and rotation as

well as artifact regressors controlling for quick jerking movements) and regressors for each

run as nuisance regressors. All regressors were convolved with the canonical form of the

hemodynamic response. The values in the regressors were applied from the onset of the

stimulus until a choice was made (average duration, 1.47s). All of our GLMs took the

general form:

BOLDi = [H1(Ra)] ∗ βai +Rb ∗ βbi + ei

Where BOLDi is the time-series of BOLD signal at each voxel i, H1 is the hemodynamic

response function (HDF) used by FSL applied to the primary regressor matrix Ra (each

column is a primary regressor), Rb are regressors of no interest and ei is a gaussian noise.

The GLM solves for βai and βbi to minimize the error ei. To analyze the influence of an

indicator regressor, the coefficients βai are contrasted against each other. The βa-contrasts

are used to generate interpretable statistics. Every GLM was estimated in several steps.

First, we estimated the model separately for each participant. After each GLM was fit to

the image time-series, the β-contrasts were combined at the subject level using a Fixed

Effects Model, then combined in a Mixed Effects Model to create group level voxel-wise

t-statistics converted into z-statistics. All images were thresholded at z = 3.1 (p=0.001).

The resulting image was refined further using cluster correction and a significance level

of p < 0.05 adjusted for family wise error. Clusters were reported if they passed that

threshold unless otherwise noted.

We used FSL Harvard-Oxford Subcortical and Cortical Structural Atlas and Talairach

Daemon Labels (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) to list every gray matter

region identified within each cluster. Functional regions were added where it was appro-

priate, using some of the notations from Dixon et al. (2017). For the regions for which we

formed a priori hypothesis, namely the VMPFC, the MOFC and the DLPFC, and given

the ambiguity around their description in the literature, we set an ex ante rule regarding

how we would report our evidence (Figure 2).
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Y: +28

LEFT RIGHT

X: +4 Z: -20

Harvard-Oxford Cortical Structural Atlas 

- ACC+10 +98+10 +96 - FP

+10 +87 - PaCG+10 +98 - SCA

+10 +97 - FMC

- FOC+10 +96

A

B

Y: +14X: 0 Z: +64

+10 +79 - SFG

+10 +83 - MFG

+10 +99 - PCC
+10 +86 - SMA +10 +84 - PrG
+10 +81 - IFG

VMPFC
MOFC

DLPFC

Figure 2: Location of VMPFC, MOFC and DLPFC with regard to Harvard-
Oxford Cortical Structural Atlas. A. Posterior part of VMPFC was defined by the
anterior part of subcallosal cortex (at Y=+28), while the anterior part of VMPFC was
defined by the posterior part of frontal pole (FP), and it overlayed with dorsal part of
frontal medial cortex (FMC) and ventral part of paracingulate gyrus/anterior cingulate
cortex. MOFC was defined by ventral part of FMC/FP and surrounded by medial parts
of frontal orbital cortex. B. DLPFC was defined according to Dixon et al. (2017) (BA
= 9, 46 and 8), by the presence of middle frontal gyrus (as well as junctions with supe-
rior frontal gyrus and inferior frontal gyrus), with the most posterior border right before
supplementary motor area (Y=+14).

2.7.1 Identifying the value tracking regions across all conditions

We used GLM1 to identify the value tracking region across all conditions. This GLM

consisted of 4 regressors of interest: the (demeaned) implicit ranking value regressor of the

on-screen option2 V and 3 indicator functions (boxcars) capturing conditions CONTROL

(C), SCALING (Sc) and BUNDLING (B).3 We report this whole brain analysis in section

3.2.1. Given the decision-making literature on subjective value has consistently reported

certain regions to be significantly associated with value tracking, we were interested in

2Remember that the off screen option is always the same, therefore V can also be interpreted as the
difference between the on-screen option and the off-screen option.

3Note that, because the off-screen option is always the same, the value regressor is orthogonal to
difficulty. BOLD responses that correlates with the value regressor cannot be confounded with BOLD
responses that correlate with difficulty.
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identifying which of these regions overlapped with regions reported elsewhere. For that

purpose, we refer to the meta analysis from Clithero and Rangel (2013b) that identifies

the set of regions comprising VMPFC and DLPFC among others that consistently track

value. We call this set Subjective Value Network, referred to as ”Meta Value” on graphs.4

2.7.2 Testing for differences in value tracking across conditions

We used GLM2 consisting of the 3 (demeaned) parametric value regressors CV, ScV and

BV and the 3 indicator functions C, Sc and B (boxcars). This GLM allows to test for

interaction effects between the value regressor and condition dummies and to analyze

differences between conditions within the value tracking region identified by GLM1 that

collapsed all conditions. This whole brain analysis is reported in section 3.2.2. GLM2 also

allows us to identify the individual condition maps, that is the regions that significantly

track value in each condition. We conduct an exploratory analysis of these maps in section

3.2.3.

2.7.3 Identifying a common core value tracking system

We ran a second exploratory analysis, a conjunction analysis within GLM2 to identify

which regions track value in all conditions. This analysis retains voxels that are signif-

icantly activated (compared to baseline) at the intersection of the individual condition

maps. Since inclusion as a finding in this exploratory conjunction contrast required three

statistically independent rejections of the null at a given voxel, we used a more liberal

z > 1.645 (p < 0.05) for this analysis. It is reported in section 3.2.4.

2.7.4 Testing for differences in responses to conditions

We used GLM1 and we computed contrasts of parameter estimates Sc−C, B−C and B−Sc.

We identified regions that were differentially activated in each condition compared to the

two others by retaining voxels that responded significantly more (less) in CONTROL than

SCALING and BUNDLING, significantly more (less) in SCALING than CONTROL and

BUNDLING and significantly more (less) in BUNDLING than CONTROL and SCALING.

The analysis is reported in section 3.3.

4Because the off-screen option is always the same, we do not report neural correlates of the chosen
option. A proper way of running this analysis requires to remove all the trials in which the off-screen
option is chosen to avoid the results to be biased towards that single point. It would therefore amount
to run the GLM on the on-screen option value regressor only on the subset of the most valuable items.
Because our task is designed such that the off-screen option is chosen 50% of the time, that analysis would
have little power.
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2.7.5 Region of interest (ROI) analysis

Given earlier research points to the significant role of the MOFC and the VMPFC in

value representation, we had a strong a priori interest in those regions (Plassmann et al.,

2007; Hare et al., 2009; Sokol-Hessner et al., 2012; Kable and Glimcher, 2007). The a

priori ROI for the VMPFC, hereafter VMPFC, was defined by a 10 voxel sphere with the

center at [0,46,-6] in MNI152 space. It encompasses VMPFC activity reported in Kahnt

et al. (2011), Chib et al. (2009), McClure et al. (2004), O’Doherty et al. (2006), Kim

et al. (2010), Lim et al. (2011) and Levy and Glimcher (2011). The a priori MOFC ROI,

hereafter MOFC, was defined by 7 voxel sphere with the center at [-8,44,-20] in MNI152

space. This corresponds to the area where the “value tracking” activity was reported by

Arana et al. (2003). All ROIs were performed on the second level cope images and we

extracted each subject’s contrast estimates averaged across all of the voxels in the mask.

These numbers will be referred to as “mean parameters”. We used a significance level of

p < 0.05 in statistical tests related to these measures and we applied corrections whenever

appropriate. This ROI analysis is reported in section 3.2.5.

2.7.6 Studying relationships between neural correlates and choice consistency

To assess whether variations in patterns of activation across individuals predict variations

in patterns of behavior, we conducted regression analysis between individual mean param-

eters in relevant clusters on the one hand and individual consistency rates on the other

hand. We retained clusters identified by the analysis of GLM1 and GLM2 in the VMPFC

and DLPFC. For the contrasts of interest, we extracted each subject’s contrast estimates

averaged across all of the voxels in the mask from the second level cope images. The

clusters and contrasts of interest are further detailed in section 3.4., where the analysis is

reported.

2.7.7 Other planned analyses

Last, we report in the Supplementary Material a replication that uses the reported ranks

elicited before the fMRI session as the value-tracking regressor. This replication adopts

the methodology used in many studies and is included for comparison. We also report the

results of a planned analysis of difficulty, and a planned connectivity analysis that uses

our a priori ROI VMPFC.
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3 Results

3.1 Behavioral measures

3.1.1 Distribution of options in the pairwise fMRI choice task

As explained earlier, we selected options based on rankings elicited out of the scanner

to target an ideal distribution of options (see Fig. 1(C)). However, once in the scanner,

bundled options were often more attractive to participants, possibly because hunger had

increased from the start of the session, leading to greater relative valuation of options

with more total calories. On average, options were evenly distributed around REF in

CONTROL, there were however 1.93 and 1.73 more options out of 10 to the left of REF

(e.g. more valuable than REF) in SCALING and BUNDLING respectively (see Fig. 3).

Distributions in SCALING and BUNDLING were otherwise comparable and not exces-

sively different from the distribution of options in CONTROL. As a direct consequence,

we observed that 50.7% of trials resulted in choices in favor of the on-screen option in

CONTROL, against 60% in SCALING and 61% in BUNDLING.5

Figure 3: Representative realized distribution of on-screen options. On average,
options were evenly distributed around REF (orange) in CONTROL (red) but slightly
biased towards on-screen options in SCALING (dark blue) and BUNDLING (light blue).
For reference, the black mark represents where REF was predicted to be according to the
ranking elicited outside the scanner.

3.1.2 Consistency rates

We counted very few missed trials resulting in no choice (1.64% of the trials) indicating

that participants were attentive and had enough time to select their preferred option. Also,

on average, 90% of the choices of a subject were consistent with their implicit rankings

(see Fig. 4(A)), with significant differences only in the comparison between SCALING

and BUNDLING (t = −2.76, p = 0.008). These rates are consistent with the Economics

literature on revealed preferences in young adults. Studies have reported that participants’

5We did not find any relation between individual asymmetries across these distributions and behavioral
measures or patterns of brain activity.
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choices adhere to the existence of well behaved utility functions and the notion that people

have clear rankings of subjective values, resulting in consistency across choices (Andreoni

and Miller, 2002; Battalio et al., 1973; Brocas et al., 2019a; Choi et al., 2007; Cox, 1997).

Consistency rates also ranged from range 63% to 100%, revealing individual hetero-

geneity. The spread was relatively small (interquartile range =0.07, standard deviation

=0.07) and observations below 76% were outliers. They were also correlated across con-

ditions (Pearson’s r =0.74, p <0.001 between CONTROL and SCALING, Pearson’s r

=0.69, p <0.001 between CONTROL and BUNDLING and Pearson’s r =0.80, p <0.001

between SCALING and BUNDLING). Last, the proportions of trials that conflicted with

the implicit ranks was higher when implicit ranks were close (see Fig.4(B)). Even though,

as explained before, we cannot know whether a specific trial was inconsistent or not (with

respect to unobserved true preferences), we can conclude that more reversals or choices

conflicting with each other occurred when options were best fitted as similar. This indi-

cates that such options were more difficult to compare. Note that this is exactly what

the Random Utility Model predicts: choices in which values are close yield a 50% chance

of choosing one option over the other. From Fig.4(B), the chance of choosing the closest

options to the right and left of the reference option (smallest non zero difficulty measures)

where a bit higher than 50%.

Figure 4: Consistency Rates. A. Consistency rates were high and similar across
conditions. B. The proportion of choices conflicting with the best value estimate was
higher when choices were similar.

3.1.3 Reaction times

It took on average longer to make decisions in BUNDLING (mean=1.62 s) compared

to CONTROL (mean=1.50 s) and SCALING (mean=1.42 s). A series of paired t-tests

and Wilcoxon signed rank tests confirmed that reaction times were significantly longer in
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BUNDLING compared to CONTROL and SCALING and significantly lower in SCALING

compared to CONTROL and BUNDLING (in all cases p<0.001, see Fig. 5(A)). Reaction

times were also correlated across conditions (Pearson’s r =0.91, p <0.001 between CON-

TROL and SCALING, Pearson’s r =0.90, p <0.001 between CONTROL and BUNDLING

and Pearson’s r =0.894, p <0.001 between SCALING and BUNDLING). They were also

longer in trials displaying an on-screen option ranked close to REF (see Fig. 5(B)), sug-

gesting that these trials were more difficult and required more deliberation. At the same

time, reaction times were shorter when the on-screen option was more appealing than

REF (except for very high valued items), suggesting either a salience effect or a tendency

to react to more appealing items (Teodorescu et al., 2016; Shevlin et al., 2022). The same

was observed by splitting data by condition (not reported). To make sure that the effect

was not entirely due to early trials, we also run the analysis by run (not reported). Even

though, overall, reaction times decreased, the same distribution was observed. This shows

that participants were actively thinking about their choices throughout the experiment,

and were not relying on memory of past trials. Last, reaction times were shorter when

participants ended up choosing the on-screen option (see Fig. 5(C)). The differences be-

tween reaction times when choosing the on-screen option and the off-screen option were

similar across conditions.

Figure 5: Reaction Times. A. It took more time to choose in BUNDLING and less
time in SCALING. B. Mean reaction times as a function of option closeness (difficulty).
C. Mean reaction times as a function of final choice (on-screen or off-screen).

Note that there is also a clear connection between reaction times and consistency

rates. Reversals were more frequent on difficult trials, when participants were spending

more time.
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3.2 Regions tracking subjective value

3.2.1 Value tracking regions across conditions

We identified candidates for regions associated with the computation of subjective value

by estimating GLM1. We found that BOLD responses in clusters that overlapped with the

Subjective Value Network correlated significantly with value (see Fig. 6). These included

regions overlapping with the VMPFC and the DLPFC. We also found significant activity

in regions not typically associated with value-tracking (e.g. fusiform gyrus and lateral

occipital cortex) and usually reported in complex visual processing. We will collectively

refer to such regions as Visual Value. Last, a signal was also found in the left cerebellum.

We report in Table 1 the neural correlates of value during the evaluation period in all

trials within the Subjective Value Network and outside it respectively.

X: -20 Y: +23 Z: +46

X: -4 Y: +42 Z: -18

VALUE TRACKING

META VALUE

LEFT RIGHT

left DLPFC
(MFG, SFG, FP)

VMPFC, MOFC, ACC
(FMC, FOC, PaCG, SCA)

+3.1 +6.95

+3.1 +5.04

Figure 6: Value tracking regions across conditions. Value tracking regions (in red)
correlate significantly with Subjective Value Network (Meta Value, in green). Considerable
overlap is present in Left VMPFC, anterior cingulate cortex, MOFC and left DLPFC.

3.2.2 Value tracking differences between conditions

We used GLM2 to identify differences in value tracking across conditions (Table 2). We

found that there was significantly higher activation in CONTROL compared to BUNDLING

in regions overlapping with VMPFC/MOFC.
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Region k z-score x y z

(A) Subjective Value Network

Left Superior Frontal Gyrus ‡ 341 4.44 -22 20 42
Left Subcallosal Cortex † 285 4.41 -6 28 -18

(B) Regions outside the Subjective Value Network

Right Supramarginal Gyrus 1381 4.9 48 -38 50
Left Occipital Fusiform Gyrus ] [ 943 4.95 -32 -66 -18
Right Temporal Occipital Fusiform Cortex ] 855 4.99 28 -48 -16
Left Lateral Occipital Cortex ] 307 3.89 -30 -78 40

Region is identified as peak activity.
Images thresholded at z = 3.1 with cluster correction at p < 0.05.
† Overlap with VMPFC/MOFC; ‡ Overlap with DLPFC.
] Overlap with Visual Value; [ Overlap with Left cerebellum.

Table 1: Neural correlates of value during the evaluation period across all conditions

Regions k z-score x y z

CV > BV

Ventromedial Prefrontal Cortex † 108 3.78 2 58 -16

Images thresholded at z = 3.1 with cluster correction at p < 0.05.
† Overlap with VMPFC/MOFC.

Table 2: Differences in value tracking response across conditions.
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3.2.3 Value tracking maps in individual conditions

We conducted an exploratory analysis to identify value-tracking regions that were signif-

icantly activated in each condition compared to baseline (Table 3). The reader should

keep in mind that associations that are significant in one condition but not another do not

imply a statistically significant difference in conditions. We found the following patterns:

First, in the Subjective Value Network, the BOLD response in regions of the VMPFC,

the MOFC and the Anterior Cingulate Cortex (ACC) correlated significantly with the

value regressor only in the CONTROL condition (Fig. 7(A)). However, the BOLD response

in DLPFC was not significantly correlated with the value regressor during any of the three

conditions (Fig. 7(B)). Second, there was no significant value tracking activity in the

SCALING condition. Last, outside the Subjective Value Network, there was significant

value tracking activity in CONTROL and BUNDLING. In particular, visual areas (Fig.

7(C)) were significantly tracking value in CONTROL (left Lateral Occipital Cortex) and

BUNDLING (Fusiform Gyrus). Last, a cluster located in the Left cerebellum was tracking

value in BUNDLING (Fig. 7(D)).

Region k z-score x y z

(A) CV: Regions responding significantly to CV

Right Temporal Occipital Fusiform Cortex ] 782 5.06 48 -56 -24
Left Lateral Occipital Cortex ] 773 5.00 -50 -74 -10
∗ Left Subcallosal Cortex † 760 4.52 -6 30 -18
Left Lateral Occipital Cortex 341 4.32 -30 -76 40
∗ Right Posterior Cingulate Cortex 302 4.02 6 -52 20

(B) ScV: Regions responding significantly to ScV

none

(C) BV: Regions responding significantly to BV

Right Precentral Gyrus 712 4.29 36 -10 62
Left Temporal Occipital Fusiform Cortex ], [ 373 5.41 -28 -44 -22
Right Occipital Fusiform Gyrus ] 207 4.25 40 -64 -14

Region is identified as peak activity.
Images thresholded at z = 3.1 with cluster correction at p < 0.05.
∗ Overlap with Subjective Value Network.
† Overlap with VMPFC/MOFC.
] Overlap with Visual Value; [ Overlap with Left cerebellum.

Table 3: Neural correlates of value during the evaluation period within conditions
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A
Meta Value

Control Value Bundling Value
+3.1 +5.04 +5.11+3.1 +3.1 +5.46

Value Tracking

X: -2

B

Y: +19

L R

C

Z: -16

Meta Value
Control Value Bundling Value

+3.1 +5.04 +5.11+3.1 +3.1 +5.46

Value Tracking

Meta Value Control Value Bundling Value
+3.1 +5.04 +5.11+3.1 +3.1 +5.46

Value Tracking

D

X: -21

Meta Value
Control Value Bundling Value

+3.1 +5.04 +5.11+3.1 +3.1 +5.46

Value Tracking

L R

Figure 7: Value tracking maps A. The VMPFC tracks value across conditions (or-
ange) and in CONTROL (red); B. The left DLPFC tracks value across conditions only;
C. Regions involved in visual processing track value across conditions and specifically
in CONTROL and BUNDLING (blue); D. clusters in the Left cerebellum track value
across condition and in BUNDLING. (Subjective Value Network (green) represented for
reference)

3.2.4 Common value tracking regions

To identify clusters that responded to value in all conditions, we focused on the map at the

intersection of the individual condition maps. Clusters that overlapped with the Subjective

Value Network were located primarily in the left DLPFC, the left VMPFC and the ACC,

and they were located close to the clusters in the VMPFC and the DLPFC that tracked

value across conditions. We also found clusters in regions implicated in complex visual

processing and the Left Cerebellum. Table 4 summarizes the clusters of relevance within

the core value region (see the Appendix for a complete list).
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Region k x y z

(A) Subjective Value Network

Left Dorsolateral Prefrontal Cortex ‡ 287 -24 12 42
Left Ventromedial Prefrontal Cortex † 49 -6 30 -16
Right Superior Frontal Gyrus 44 6 38 30
Right Frontal Pole 20 12 60 18
Right Anterior Cingulate Cortex 8 6 30 10

7 12 40 -2
2 6 2 26

Anterior Cingulate Cortex 3 4 -2 30
Left Anterior Cingulate Cortex 1 -6 40 4

(B) Regions outside the Subjective Value Network

Right Temporal Occipital Fusiform Gyrus ] 82 40 -48 -24
Left Lateral Occipital Cortex ] 60 -26 -54 -24
Left cerebellum [ 6 -22 -54 -26

Images thresholded at z < 1.645, uncorrected.
† Overlap with VMPFC/MOFC; ‡ Overlap with DLPFC.
] Overlap with Visual Value; [ Overlap with Left cerebellum.

Table 4: Neural correlates of value common to all conditions within and outside of the
Subjective Value Network.
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3.2.5 Value-tracking activity in a priori regions of interest

We performed an analysis of our two independent ROI, VMPFC and MOFC (Fig. 8). In

both cases, mean parameters were significantly different from 0 across conditions (t=3.32;

p=0.002 and t=3.12; p=0.003 respectively). Analysis of variance did not reveal any differ-

ence across conditions (One-way analysis of means, f=2.43, p=0.091 and f=2.82, p=0.062)

and pairwise t-tests did not identify single differences either (all FDR adjusted p > 0.12

and > 0.07 respectively).

Figure 8: Value tracking activity in a priori regions of interest. A. Distribution
of mean parameters in VMPFC across conditions; B. Distribution of mean parameters in
MOFC across conditions.

3.2.6 Value-tracking summary

The findings reveal similarities and differences in activation patterns across conditions.

Regions comprising clusters in (i) the left VMPFC and the left DLPFC, (ii) the visual

cortex and (iii) the left cerebellum track value within and across all conditions. Significant

differences across conditions have been found in VMPFC regions that show higher acti-

vation in CONTROL compared to BUNDLING. While no other differences are detected

with conservative thresholds, exploratory analyses suggest that the individual condition

maps (where activation is significant with respect to baseline, given conservative thresh-

olds) may differ. There is in particular no significant activity (compared to baseline) in

the SCALING condition.
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3.3 Main effect of condition on neural activity

The study of condition regressors in GLM1 reveals that BOLD activity in regions in the

left DLPFC, including clusters at the junction with the left VLPFC and regions in the right

DLPFC including clusters at the junction with the right VLPFC, was significantly higher

in CONTROL and BUNDLING (Fig. 9(A)). Also, BOLD activity in clusters located in

the Left/Right cerebellum was higher in BUNDLING (Fig. 9(B)).

A

Y: +13

L R

C > B B > S
+3.1 +7.34 +7.02+3.1 +3.1 +7.93

C > S
+3.1 +7.34

B > C

Y: +13

L R

Y: +13

L R

Y: +13

L R

B C > B B > S
+3.1 +7.34 +7.02+3.1 +3.1 +7.93

C > S
+3.1 +7.34

B > C

X: -5

Figure 9: Differences in responses to condition. A. Several clusters in the DLPFC
and at the junction of the VLPFC responded differentially to conditions ; B. Several clus-
ters in the left/right cerebellum exhibited differential activity in BUNDLING compared
to CONTROL and SCALING. (Heat-maps represent z-values)

Within these regions, several clusters were uniquely associated with conditions (Table

5). First, there was divergent processing between single items and bundles resulting in

higher activity in two clusters in the left DLPFC and the left VLPFC in CONTROL.

Second, there was also divergent processing between SCALING vs. CONTROL and

BUNDLING conditions, resulting in lower activity in two clusters in the left and right

DLPFC, at the junction of the VLPFC in SCALING. Last, BUNDLING recruited a sub-

set of voxels in the left/right cerebellum, where BOLD activity was systematically higher

in that condition. We also checked that differences in activation across conditions in those
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clusters were not correlated with differences in reaction times, suggesting that higher acti-

vation was not mechanically induced by higher evaluation times (PCCs ranging from 0.12

to 0.3 with p-values > 0.05).

Region k x y z

CONTROL> SCALING & BUNDLING

Left Dorsolateral Prefrontal Cortex 391 -24 16 36
Left Dorso- and Ventro-lateral Prefrontal Cortex 60 -54 2 28

SCALING<CONTROL & BUNDLING

Right Dorso- and Ventro-lateral Prefrontal Cortex 554 44 16 14
Left Dorso- and Ventro-lateral Prefrontal Cortex 245 -36 8 18

BUNDLING>CONTROL & SCALING

Left/Right Cerebellum 35 4 -78 -30

Images thresholded at z = 3.1 with cluster correction at p < 0.05.

Table 5: Divergent processing in DLPFC/VLPFC and cerebellum.

3.4 Neural correlates of choice consistency

In this section, we ask whether individual variations in choice consistency are associated

with individual variations in patterns of activity in the VMPFC and the DLPFC. The

VMPFC has been associated with the ability to make consistent choices in a lesion study

(Camille et al., 2011). The DLPFC is involved in working memory, which itself has

been associated with consistency (Brocas et al., 2019a). We retain four clusters that

demonstrate higher responses to increases in value (compared to baseline) in our study.

The first two are extracted from GLM1 and reported in Table 1: VMPFC-1 corresponds

to the cluster that overlaps with VMPFC; DLPFC-1 corresponds to the cluster that

overlaps with DLPFC. These regions respond to increase in value across all conditions.

The last two are extracted from the conjunction of the individual condition maps and are

reported in Table 4: VMPFC-2 corresponds to the cluster that overlaps with VMPFC;

DLPFC-2 corresponds to the cluster that overlaps with DLPFC. These regions respond

to increases in value in all individual conditions. Dependent variables are individual mean

parameters in the clusters of interest. Independent variables are individual consistency

rate and condition dummy variables used as controls. We use robust standard errors

(Table 6). Higher mean parameters in both DLPFC regions were associated with higher

consistency scores. We also found a positive association between consistency scores and
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mean parameters in the common VMPFC region.

VMPFC-1 DLPFC-1 VMPFC-2 DLPFC-2

Consistency rate 44.940 66.801∗∗ 91.52∗ 68.56∗∗

36.104 32.653 (53.07) (32.45)
SCALING -9.926 1.252 -13.27 -9.05

9.742 5.766 (11.62) (6.07)
BUNDLING -22.828 2.601 -15.79 -7.37

9.588 7.733 (13.18) (7.24)
Constant -19.968 -53.945 ∗ -52.91 -41.64

33.783 30.079 (47.06) (28.49)

Observations 60 60 60 60
Mult. R2 0.038 0.018 0.022 0.028

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01, ∗∗∗∗ p < 0.001
Robust (clustered) standard errors at the subject level

Table 6: Relationship between ROI mean parameters and choice consistency.
Of the overall value-tracking regions, only DLPFC was associated with consistency. Of
the common value-tracking regions, both VMPFC and DLPFC were associated with con-
sistency.

4 Discussion

We hypothesized that value representation was modulated by the specific way options are

bundled when presented to a decision-maker. We categorized choices between single items

as simple and choices involving two single items as complex. In line with the hypothesis,

we expected to see different neural patterns within known value-tracking regions, such

as the VMPFC and the MOFC. We also expected that more complex options, such as

bundles made of heterogenous items, would be associated with more activity in regions

implicated in cognitive processes including working memory. Therefore, we hypothesized

that clusters in the DLPFC would be differentially activated especially in the BUNDLING

condition. We asked four questions: (1) Is there a common value tracking region when

options are simple and complex? (2) What are the neural correlates of value as a function of

complexity? (3) Does valuation of multiple goods recruit networks implicated in attention

and working memory? (4) Do consistent choices across conditions have a neural signature?

Our findings suggest that there is a common value region comprising the VMPFC

and the DLPFC, however additional regions are identified as tracking value, sometimes

as a function of task demands. First, regions involved in high-order visual processing
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were associated with value-tracking. Second, clusters in the left and right DLPFC at the

junction of the VLPFC responded differently to conditions, revealing divergent processing

across conditions. Last, we observed unexpected patterns of activation in clusters located

in the cerebellum: BOLD responses in voxels in the right/left cerebellum were significantly

higher in the BUNDLING condition, and voxels in the left cerebellum tracked value.

However, the results did not support our ex ante categorization of choices: decisions in

SCALING took less time and exhibited less neural activity in critical regions. We also

did not find that DLPFC was more critically involved in the more complex BUNDLING

condition. Still, activity in clusters of the DLPFC was in line with the possibility that

DLPFC supports consistency of decisions across trials and across conditions.

We found significant differences in value-tracking patterns only in the VMPFC/MOFC:

this region was differentially activated in CONTROL compared to BUNDLING. Our ex-

ploratory analysis also revealed that the individual condition maps associated with value

tracking did not look alike. We found strong support for the involvement of the VMPFC

in the condition closest to earlier experimental settings (Konovalov and Krajbich, 2019)

but less for the valuation of scaled and bundled options. In particular, there was no sig-

nificant activity (compared to baseline) during the evaluation period in SCALING and

BUNDLING after cluster correction. This result is consistent with studies that did not

observe value-related activity in the VMPFC (de Berker et al., 2019; Hunt et al., 2013;

Jocham et al., 2014). Still, using a more liberal threshold and restricting to voxels that

were tracking value in all tasks, we found that a cluster located in the VMPFC belonged

to this map. Clusters in the left DLPFC also tracked value in our study. While the effect

was small and not always detected after appropriate whole-brain corrections, a cluster in

the DLPFC was also present in the intersection map that retains voxels active in all tasks.

Given any set of EPI acquisition parameters, signal loss due to susceptibility artifact

varies as a function of Z-plane orientation (Weiskopf et al., 2006). In the present study,

slice acquisition was standardized to the AC-PC line, which does not optimize sensitivity

within the VMPFC. Although not without trade-off (especially lowered sensitivity in the

temporal poles) a negative acquisition tilt may have improved our power to test hypotheses

related to VMPFC activity.

Value-tracking recruited regions involved in visual processing (fusiform gyrus, lateral

occipital cortex). It has been shown in other studies that higher value targets are associ-

ated with greater visual activation (Serences, 2008; Serences and Saproo, 2010; Tang et al.,

2012; Anderson et al., 2014). It has also been shown that activity in the fusiform gyrus

correlates with the aesthetic of visual attributes and exhibits functional connectivity with

VMPFC area involved in value computation (Lim et al., 2013), a coupling we also observe

in our setting (see Supplementary Material).
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Some regions in the DLPFC and VLPFC were differentially associated with conditions.

Different patterns of activity in these regions may be used to detect the characteristics

of the on-screen option and help recruit the task-relevant value-tracking regions. This

latter conjecture is in line with the role of the VLPFC in response inhibition and goal

appropriate response selection (Aron et al., 2004), as well as its role in the integration of

choice characteristics to represent subjective value (Fujiwara et al., 2018). An alternative

block design that groups trials of the same condition together would help disentangle

between the two possible conjectures.

We unexpectedly found that clusters located around the cerebellum were tracking value

and were activated differentially across conditions. Even though the connection between

decision-making and cerebellar functions remains unclear, the finding is reminiscent of

other studies (in other domains) that revealed a role for the cerebellum in decision-making.

Cerebellar circuitry has been associated with computations that support accurate perfor-

mance in perceptual decision-making tasks (Deverett et al., 2018) and high-level functions

(Rosenbloom et al., 2012; Cardoso et al., 2014). Lesion studies have shown that patients

with cerebellar damage perform worse than control groups in tasks such as the Stroop

Test (Gottwald et al., 2004), the Wisconsin Card Sorting Task (Karatekin et al., 2000)

and in instruments that assess cognitive flexibility (Manes et al., 2009). The cerebellum

has also been linked more directly to the maintenance of working memory (Deverett et al.,

2019; Grimaldi and Manto, 2012). These associations are likely promoted by reciprocal

connections between the cerebellum and the prefrontal cortex (present in both human and

non-human primates) (Rosenbloom et al., 2012). Moreover, it has also been shown that

the right cerebellar hemisphere is associated with logical reasoning while the left cere-

bellum mediates attentional and visuo-spatial skills (Baillieux et al., 2010). These latter

skills might be more relevant in the BUNDLING context, resulting in a condition specific

response. Also, activity in the cerebellum may be due to its motor-related function. In-

deed, it is possible that highly attractive options may have caused participants to press

the button more strongly, resulting in associations with value tracking.

The results obtained in the SCALING condition were the most unexpected. Even

though the on-screen option was a priori more complex to evaluate than a single item, it

took less time compared to the two other conditions. At the same time, signal increase

within regions relevant in decision making was generally lower during this task condition

relative to the CONTROL condition. These two related anomalies are puzzling, but

the analysis allows us to rule out certain explanations. Even though participants made

choices slightly different from what they were expected (given their rankings outside the

scanner), the bias was small and not different across the SCALING and BUNDLING

conditions. The results were therefore not due to design or calibration issues applying to
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the SCALING condition differentially. We also did not find more choice inconsistencies and

the value regressor captured choices equally well. There was also no difference regarding

how participants dealt with trials ending in an on-screen choice vs. an off-screen choice

across conditions. Overall, choice measures did not indicate that the processing of value

was different, only reaction times and neural data did. Another possible explanation

relies on the fact that choices were self-paced and generated differences in reaction times,

which may have artificially produced higher activation in CONTROL and BUNDLING

compared to SCALING as sometimes reported in the literature (Grinband et al., 2008;

Poldrack, 2015). However, we found that differences in reaction times were not associated

with differences in signals, indicating that spending more time on the task did not result

in higher activation in a given condition compared to another.

The anomalies in the SCALING condition hinted to the possibility that participants

used a ”heuristic”, a rule such that a participant comes to decide to make decisions on

the basis of amount alone, without integrating the taste attribute. Said differently, value

computation may have been complemented by a parallel non value-based process to which

a participant switch when efficient. Heuristic usage has already been suggested as an

explanation of behavior in value-based decision-making paradigms (Brocas et al., 2019a,b).

A “more is better” rule may have been applied in our context. Because the choices in the

scanner were globally consistent with the rankings provided outside the scanner, it is

likely that the same processes were used in both cases. This suggests that it is not an

artefact of the experimental task, but a naturally occurring process worth investigating

further. A first step would be to contrast the results with a task in which REF is also

a scaled option. There was also a small change in reaction times over the course of the

experiment, suggesting that participants may have started valuing quantity more as they

became hungrier, adopting a behavior that looks like a heuristic while it only reflects a

change in priorities. Alternatively, a decrease in reaction times may be explained by a

differential accumulation of information that uses characteristics of the task to efficiently

save on costs of processing. For instance, a model in which the brain keeps track of twice

the current accumulated value may help reach a decision threshold sooner. It is unclear

however how this model should be extended to heterogenous bundles which also feature

externalities between items (e.g. consuming a sweet and a salty snack in two different

events is different from consuming them together). More studies of the valuation process

in the presence of quantities, in particular studies where one could compare the value of

single items and the value of their respective bundles, are needed to understand why value

is computed differentially in SCALING and BUNDLING.

Even though we observed little variance in consistency measures across individuals,

which is to be expected in a population of undergraduate students (Brocas et al., 2019a),
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we found that differences in activity patterns in both the VMPFC and the DLPFC were

explained by variations in individual consistency rates. We conjecture that consistency

results from a reduction in noise around the trial-by-trial valuation process, rather than

an ability to remember past choices and repeat them. The latter has been reported only in

participants (faculty and PhD students) with familiarity with revealed preference theory

who were concerned with avoiding embarrassing violations of rationality (Harbaugh et al.,

2001). Participants are otherwise not believed to track their choices to buy consistency in

revealed preferences tasks. The fact that the distributions of reaction times as a function of

difficulty were the same across runs supports the hypothesis that participants were actively

considering their choices. The noise-reduction mechanism responsible for consistency may

be supported by the DLPFC. Indeed, the involvement of the VMPFC in choice consistency

has already been documented in Camille et al. (2011) in a lesion study. An impairment

of the VMPFC has a direct effect on the ability to evaluate options. Our study suggests

the possibility that DLPFC is required to keep the valuation process consistent, even

when VMPFC is not impaired. Said differently, VMPFC and DLPFC may work jointly

to provide an accurate representation of value in each trial, resulting in consistent choices

across trials.
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Hanne Baillieux, Hyo Jung De Smet, André Dobbeleir, Philippe F Paquier, Peter P
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and Iain C Campbell. Differential neural responses to food images in women with

bulimia versus anorexia nervosa. PLoS One, 6(7):e22259, 2011.

Nathalie Camille, Cathryn A Griffiths, Khoi Vo, Lesley K Fellows, and Joseph W Kable.

Ventromedial frontal lobe damage disrupts value maximization in humans. Journal of

Neuroscience, 31(20):7527–7532, 2011.

Mickael Camus, Neil Halelamien, Hilke Plassmann, Shinsuke Shimojo, John O’Doherty,

Colin Camerer, and Antonio Rangel. Repetitive transcranial magnetic stimulation over

the right dorsolateral prefrontal cortex decreases valuations during food choices. Euro-

pean Journal of Neuroscience, 30(10):1980–1988, 2009.

Caroline de Oliveira Cardoso, Laura Damiani Branco, Charles Cotrena, Christian Haag

Kristensen, Daniela Di Giorge Schneider Bakos, and Rochele Paz Fonseca. The impact

of frontal and cerebellar lesions on decision making: evidence from the iowa gambling

task. Frontiers in neuroscience, 8:61, 2014.
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