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Abstract

We study from a developmental viewpoint the ability to perform contingent reasoning
and the cognitive abilities that facilitate optimal behavior. Individuals from 11 to 17
years old participate in a simplified version of the two-value, deterministic “acquire-
a-company” adverse selection game (Charness and Levin, 2009; Mart́ınez-Marquina
et al., 2019). We find that even our youngest subjects understand well the basic
principles of contingent reasoning (offer the reservation price of one of the sellers),
although they do not necessarily choose the optimal price. Performance improves
steadily and significantly over the developmental window but it is not facilitated by
repeated exposure or feedback. High cognitive ability–measured by a high performance
in a working memory task–is necessary to behave optimally in the simplest settings
but it is not sufficient to solve the most complex situations.
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1 Introduction

It has been extensively documented in the experimental literature that individuals have

a difficult time making profit maximizing decisions in situations involving contingent rea-

soning. Examples include the winner’s curse in common value auctions (Kagel and Levin,

1986), zero-sum betting (Sonsino et al., 2002) and asset trading for informational rea-

sons (Carrillo and Palfrey, 2011). Researchers have proposed behavioral theories to model

the imperfect ability of subjects to understand the relationship between the actions and

the information of other players (Eyster and Rabin, 2005; Crawford and Iriberri, 2007;

Esponda, 2008; Rogers et al., 2009) and studied lookup patterns to differentiate between

choice mistakes and limited attention (Brocas et al., 2014).

One of the most elegant formalizations of contingent reasoning is the “acquire-a-

company” game (Samuelson and Bazerman, 1985; Ball et al., 1991), where a buyer makes

a take-it-or-leave-it offer to a seller for a company. The company’s value v is privately

known to the seller and is worth a premium to the buyer. This model is analogous to

a lemon’s problem (Akerlof, 1970) and, under some parametric assumptions, information

asymmetry results in no exchange despite the potential welfare gains from trade. The

experimental literature has shown that individuals have considerable difficulties in finding

the optimal strategy (Grosskopf et al., 2007; Bereby-Meyer and Grosskopf, 2008). Since

the setting involves multiple players, beliefs about the behavior of others play a key role

in the buyer’s choice. Also, computing a conditional expectation requires some relatively

challenging bayesian computations that are known to be difficult for many individuals.

Overall, this literature has been successful in identifying some of the difficulties faced by

participants. However, the complexity of the environment has been a handicap to achieve

a full understanding of the reasons for the observed departures.

To further advance this comprehension, the innovative experiments by Charness and

Levin (2009) and Mart́ınez-Marquina et al. (2019) (from now on [CL] and [MNV]) strip

down the problem to its very essence. [CL] automatize the seller’s decision problem and

restrict the company’s worth to only two possibles values. The paper shows that even

in this extremely simplified setting, 40% to 70% of subjects still deviate from the theo-

retical prediction.1 [MNV] decompose the problem into what they call “computational

complexity” and “loss of power of certainty” to study the importance of each effect in

the difficulty to perform contingent reasoning. To achieve this decomposition, they add

a deterministic version where the buyer faces two companies, one of each value, but it is

required to make the same offer to both. The authors show that equilibrium compliance in

1Deviations are still significant when participants play in teams (Casari et al., 2016; Cooper and Sutter,
2018). Also, the response is stronger to adverse selection than to advantageous selection (Ali et al., 2021).
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the deterministic version is significantly higher than in the probabilistic one. Equilibrium

play increases further if buyers are educated first, by playing a number of trivial rounds

against only one company of known value. However, and despite all these improvements,

the proportion of individuals who play optimally remains relatively low.

The relatively low compliance with equilibrium play in [MNV] suggests that the prob-

abilistic and deterministic versions of the game pose qualitatively similar challenges to the

reasoning of players. This is natural if we go back to the very definition of contingent (or

conditional) reasoning. Conditional statements take the form “if contingency A is true,

then consequence B will follow”. In the acquire-a-company game, contingent reasoning

is required to determine the kind of offer the seller would accept given their private in-

formation (the contingency). To conclude about an optimal offer, the buyer must take

the output of contingent reasoning for each possible contingency and use it as a starting

point to reason about the best course of action. This step requires recursive thinking.

It involves noting that each contingency leads to a different response and resolving these

contradictions to pick the best overall. Obviously, a probabilistic setting in which A may

or may not be true, because of uncertainty around A, is the prime example of contin-

gent reasoning. However, the same type of reasoning is needed to solve the deterministic

problem. Contingent reasoning must be applied to each contingency (which now is always

true) and recursive thinking must resolve the same contradictions between accepted offers

across sellers. The deterministic formulation only facilitates the representation of contin-

gencies.2 The question therefore is: why do people find it so difficult to draw conclusions

from hypothetical statements (whether true sometimes or always) and act in their best

interest?

The goal of the present paper is to provide an investigation of the development of

contingent reasoning and the cognitive abilities that facilitate optimal behavior. To this

purpose, we study the evolution of behavior in the acquire-a-company game from pread-

olescence to young adulthood (11 to 17 years old). The above mentioned research shows

that contingent reasoning is challenging for educated adults. We want to determine if this

skill takes time to acquire, is invariant to age or is lost during adolescence. We also want

to find out which features make contingent thinking so complex. In particular, we are

interested in studying at which age (if any) are individuals capable of learning from their

mistakes. Finally, but importantly, we determine if the ability to perform well in this task

is related to known cognitive abilities critical to complex reasoning.

We consider the deterministic version of [MNV] (itself based on [CL]) which reduces

2This is consistent with research that reports better comprehension and inferences in all age groups
when problems are formulated in natural frequencies as opposed to probabilities (McDowell and Jacobs,
2017).
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contingent reasoning to its core logical components, deprived of the power of certainty.3

We also simplify the task further in three dimensions. First, we present a graphical, story-

based version. Limiting the analytical requirements ensures comprehension and helps

retaining the interest of our youngest participants without affecting its essence. Second,

we consider an additive instead of a multiplicative buyer’s premium (v + x with x > 0

instead of αv with α > 1), which further facilitates numerical calculations. Third, we

provide feedback after each round (whether none, one or both companies are acquired and,

if they are, the net payoff of each transaction). This allows us to study initial behavior as

well as learning. At the end of the experiment, we ask participants to complete a working

memory task to assess the contribution of cognition to optimal behavior in the game.

The reader may find it adventurous to study developmental decision-making in settings

that are difficult for educated adults. We should notice, however, that existing research

using indirect (Harbaugh et al., 2001) as well as direct (Brocas et al., 2019) tests of

transitivity has demonstrated that by the end of elementary school, children have achieved

a level of GARP consistency and transitivity of preferences comparable to that of adults.

Furthermore, our study on dynamic games of complete information (Brocas and Carrillo,

2021b) shows that equilibrium behavior increases significantly with age up until middle

school and stabilizes afterwards. These results suggest that, by 10 years of age, children

satisfy the basic axioms of rationality and are capable of performing backward induction.

In other words, they are equipped with the cognitive tools required to understand decision-

making problems and evaluate options logically. Naturally, this is a necessary but not

sufficient condition for optimal behavior. The question we address is whether, at this

young age, they are able to transform this documented analytical ability into payoff-

maximizing choices.

Our main findings are the following. First, the vast majority of our subjects–including

the youngest ones–show a solid understanding of the basic principles of (deterministic)

contingent reasoning. Indeed, 75% (6th grade) to 97% (10th grade) of participants in

a grade offer “reasonable” prices in every round, namely, one of the seller’s values. No

subject offers the average value of the two sellers. Second, the fraction of individuals who

submit the optimal price in every round increases steadily and significantly with age in

the entire window of observation, from 11% in 6-7th grade to 50% in 11th grade, and

all the way to 70% in the control population. We conjecture that our simple narrative

and graphical design may have contributed to an increased comprehension of the problem

3In the terminology of [MNV], these elements are combined into a broad “computational complexity”
component. Because the reasoning needed to select an offer both in the absence and in the presence
of “power of certainty” still requires to think contingently, computational complexity still contains the
contingent reasoning component.
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relative to the previous literature.4 Third, comprehension of the simple one-seller problem

is predictive of optimal pricing in every age group. It suggests that a main challenge

in problems involving contingent thinking is the difficulty to understand basic aspects

of the problem, even more than the ability to maximize profits once these aspects are

understood. Finally, performance in the working memory task highly correlates with the

basic ability to realize which prices are potentially optimal (one of the sellers’ values)

and, to a lesser extent, with the more subtle ability to optimally discriminate between the

two. It suggests that working memory alone accounts for some but not all the variance

in reasoning abilities. It also raises a more general question: is working memory a key

cognitive ability which is necessary for (and predictive of) contingent reasoning not only

in children and adolescents but also in adults? Our tentative answer would be “yes”, but

future research in adults should explore this correlation.

2 Experimental design

The paper studies a graphical, simplified, deterministic version of the acquire-a-company

game ([CL] and [MNV]) in a population of preadolescents and teenagers (11 to 17 years

old). This pool of individuals presents some methodological challenges. We follow the

guidelines proposed by Brocas and Carrillo (2020a) to address them. In particular, we

simplify the procedures given the participants’ limited attention, we present the task in a

simple and attractive way, and we include a benchmark adult comparison group.

Participants. We recruited 261 participants (133 females) from 6th to 11th grade at

the Lycée International de Los Angeles (LILA), a French-English bilingual private school

in Los Angeles.5 For comparison, we ran the same experiment with a control population

of 71 USC college undergraduates (U) using the same procedures. Table 1 reports the

distribution of participants by grade and approximate age.6

Notice that with some exceptions (e.g., Cobo-Reyes et al. (2020)), studies with children

usually do not recruit an adult population. We believe it is important to include an adult

control group to establish a behavioral benchmark, even if the comparison should be

taken with caution. In our case, the majority of students at LILA are from caucasian

4Visual representations have been shown to improve accuracy in inference problems (Brase, 2014; Binder
et al., 2015).

5Students from 12th grade did not participate in the study because they were preparing for national
french exams.

6We also had the opportunity to conduct the same experiment with two small samples: 8 math teachers
at LILA and 11 master students at USC. In Appendix B we report some summary conclusions of these
two populations. There are fewer high schoolers in the sample due to some testing constraints but mostly
due to a recent expansion of the school that has attracted a larger cohort of middle schoolers.
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LILA USC
Grade 6th 7th 8th 9th 10th 11th U
Age 11-12 12-13 13-14 14-15 15-16 16-17 18-23
Participants 55 45 62 36 33 30 71

Table 1: Number of participants by grade

families of upper-middle socioeconomic status. After graduation, most of them attend

well-ranked colleges in Europe, Canada and the US (including USC and schools in the

UC system). Overall, and despite some differences (nationality, family background, size of

peer group, etc.), we believe the two populations are a reasonable match. Also, while the

pool has the disadvantage of not being representative of the US population (which raises

the issue of external validity), it also has some advantages. In particular, it is homogenous,

making it possible to perform meaningful age comparisons. Indeed, as shown in previous

research (Charness et al., 2019; Brocas and Carrillo, 2021b), the strategic behavior of

children is highly dependent on a variety of economic and demographic characteristics.

Pooling participants from different schools could potentially introduce confounds that hide

any developmental trajectory. We avoid these confounds by recruiting children from the

same school, who follow the same curriculum, and come from similar social and economic

backgrounds.7 We also collect information about gender and number of siblings to capture

potential remaining sources of individual heterogeneity. Finally, there is no self-selection

within the school, as only 3 students in the entire school opted out of the study. The

participation rate was 87% due to school absences and testing constraints on the days of

the experiment.

Procedures. We ran 33 and 8 sessions at LILA and USC with 6 to 12 participants each.

Sessions at LILA were run in classrooms during school hours with individual partitions

to preserve anonymity. Sessions had a mix of male and female participants always from

the same grade. Sessions at USC were run at the Los Angeles Behavioral Economics

Laboratory (LABEL) in the Department of Economics at USC. Procedures were identical

in both cases. The experiment was programmed in ‘oTree’ (Chen et al., 2016a) and

implemented on touchscreen SurfacePro PC tablets through a wireless closed network.

Due to space and time constraints, we sometimes ran two sessions simultaneously.

The Treasure Game. In developmental studies, it is of paramount importance to pro-

vide a simple, graphical interface and a story which is sound, accessible and appealing

to a young population. With this goal in mind, we developed the following narrative.

7Naturally, it would be even better to have a larger sample size, with children from multiple schools
and diverse characteristics.
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Each of two computer robots own a treasure chest. Chests have an upper and a lower

compartment. Robots do not have the key for the lower compartment so the value of the

chest to them is the amount of points in the upper compartment. You, the participant,

own the keys of the lower compartments. This means that the value of the chests to you

is the amount of points in both the upper and lower compartments. You can purchase

one or both chests. Robots are preprogrammed to accept any offer equal to or greater

than the value in the upper compartment of the chest. Your task is to choose which offer

to make given one condition: it has to be the same for both robots.8 Figures 1a and 1b

provide screenshots of the game.9

(a) Initial choice (b) Feedback

Figure 1: Screenshots of the Treasure Game

Basic theory. Let vi (∈ {v, v}) be the value of the chest for one of the sellers (points

in the upper compartment), with 0 < v < v. Let x (> 0) be the extra value for the buyer

(points in the lower compartments of the chests which, for simplicity, are constrained to

be the same in both chests). Under common knowledge of (v, v, x), if the buyer offers a

price p his payoff π(p) is:

π(p) =


0 if p < v
(v + x− p) if v ≤ p < v
(v + x− p) + (v + x− p) if v ≤ p

8Formally, if the participant inputs an offer for one robot, the offer for the other robot gets automatically
populated with the same number.

9During the design phase, we read the instructions to a small set of students (who obviously did not
participate in the experiment) and noticed that some children had a hard time understanding asymmetric
valuations. A chest with different compartments and a privately owned key was a natural way to explain
it. Using robots instead of humans emphasized the deterministic nature of the decision rule of opponents.
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This means that the optimal price p∗ and the corresponding payoff π(p∗) are:

p∗ =

{
v if v + x ≤ v
v if v + x ≥ v and π(p∗) =

{
x if v + x ≤ v
x+ v + x− v if v + x ≥ v

Notice that, while the logic behind the optimal price is identical in our setting than under

the standard multiplicative structure, the analytical formulation is simpler. This simplifi-

cation allows us to screen out computational mistakes and concentrate on cognitive mis-

takes that are not based on the ability to manipulate quantities. Also, the pre-announced

strategy of the robots transforms the game into an individual decision making problem

(as pioneered by [CL]), but it still retains many features of a strategic game.10

Timing. The experiment involved the following six steps. First, we read the in-

structions. Second, to ensure understanding of the rules of the game, we implemented

a computerized, four-question, multiple choice quiz that every participant had to answer

correctly before moving on.11 Third, we moved to the paid part of the experiment. To

further facilitate comprehension, we followed [MNV] and started with three (paid) “warm-

up” rounds of the Treasure Game, where subjects played against only one robot, and only

one chest with values v and x in the upper and lower compartments, respectively.12 This

was followed by twelve rounds of the core game with two robots, see Figure 1a.13 The

only difference across rounds were the values in the upper and lower compartments of the

chests (v, v, x). Values were chosen in a way that the optimal price p∗ switched every two

rounds between v and v (see Table 7 in Appendix A4). After each round, participants

received feedback on whether the offers were accepted by the robots (no deal or deal) and

the net points accumulated, zero under no deal and value of the chest minus price offered

(vi + x − p) under deal, as reflected in Figure 1b. This section was self-paced, with no

limit on the time participants could take. It was programmed in a way that subjects had

to wait for others to finish only at the end of the 15 rounds. Fourth, there was a two-part,

non-incentivized questionnaire. The first part of the questionnaire was one round iden-

tical to the main treasure game, except that we also elicited the participants’ confidence

10As emphasized in the surveys by Sutter et al. (2019) and List et al. (2018), most economic experiments
with children and adolescents focus on rationality of choices, time preferences, risk preferences and social
preferences. There are a few exceptions of games of strategy studies (e.g., Murnighan and Saxon (1998);
Harbaugh and Krause (2000); Sher et al. (2014); Czermak et al. (2016); Chen et al. (2016b); Fe et al.
(2020); Brocas and Carrillo (2020b, 2021b, forthcoming)).

11If a participant missed one or more answers, a warning sign would appear stating “not all answers
are correct, please try again”. We provided individual coaching for individuals who struggled with some
question (around 10%-15% of our participants).

12Our initial idea for the warm-up rounds was to have two robots but allow two different prices. Given
the success of the one-robot treatment in [MNV], we decided to follow their design.

13Notice that the screen reports not only the values in each compartment but also the total. Again, the
goal is to minimize departures from optimality that are due exclusively to computational mistakes.
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in their response.14 The second part of the questionnaire was one round analogous to

the treasure game but framed in the standard probabilistic setting, also with a question

regarding the participants’ confidence. The goal of this section of the experiment was to

obtain a quick, simple (but obviously crude) measure of [MNV]’s power of certainty in

our setting.15 Fifth, we ran a computerized version of the Backwards Digit Span Task

(Wechsler, 1949). Participants observed a sequence of digits in their screen (from three

to eight) and had to report them in reverse order. Participants would obtain points in a

trial only if they reported the entire sequence correctly (see section 4.2 for details). The

Digit Span Task is a simple behavioral measure of working memory capacity. Working

memory refers to the ability to maintain and manipulate information during a cognitive

activity (Baddeley and Hitch, 1974) and it is critical to reasoning tasks, in particular tasks

that require several reasoning steps and the manipulation of multiple pieces of informa-

tion (Engle et al., 1999). Since the treasure game requires working memory and cognitive

processing, we conjectured a positive correlation between performance in the Digit Span

Task and optimal choice in the game. This section was also self-paced. Sixth and last, we

conducted a questionnaire regarding, age, gender, siblings and favorite topic at school. In

Appendix A, we present a transcript of instructions, quiz, and two-part questionnaire, as

well as a full description of the payoffs used in the 15 rounds of the treasure game.

Payoffs. Participants accumulated points during the experiment. Points were con-

verted into money paid immediately at the end of the experiment in cash (USC) or with

an amazon e-giftcard (LILA, where cash transfers on premises are not allowed). The con-

version rate was $0.02 per point. There was a $5 show-up fee paid only to USC students to

account for differences in marginal value of money and opportunity cost of time. Average

earnings were $12.5 at LILA and $14.2 + $5 show-up fee at USC. The experiment never

exceeded 50 minutes (one school period) including instructions and payments.

3 Results

3.1 Aggregate behavior

We first study aggregate choices in the LILA population and compare it with the control

USC group. Figure 2 reports the average fraction of optimal play in each grade. We

group the rounds in three cases. First, the three warm-up rounds with one computer

14We asked: “Do you think your offer got you the most possible points?” (Yes / Maybe / No).
15To be clear, our study is not centered around the comparison between the deterministic and proba-

bilistic versions of the treasure game, as in [MNV]. Based on previous research on adults, we believed that
the deterministic version would be already demanding enough for our population. Our core question is the
evolution with age of contingent thinking with no uncertainty and the correlates with cognition.
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(hereafter referred to as “o-rounds”) where the optimal offer is v. Second, the six rounds

with two computers where the optimal offer is the low value v (hereafter referred to as

“l-rounds”). Third, the six rounds with two computers where the optimal offer is the

high value v (hereafter referred to as “h-rounds”). However, remember that l- and h-

rounds are intertwined in the experiment. For the rest of the paper, we also count as an

optimal choice if the participant offers one token above the optimal number (v + 1 in o,

v + 1 in l and v + 1 in h). Indeed, subjects were concerned about the tie-breaking rule.

Despite our explanations during the instruction period, it is evident from the answers

that some individuals preferred to “play it safe.” With a slight abuse of notation, we call

v+ ∈ {v, v + 1}, v+ ∈ {v, v + 1} and v+ ∈ {v, v + 1}.
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Figure 2: Optimal play by grade

Figure 2 already delivers some interesting conclusions. Optimal choice is very frequent

in all school-age grades in o-rounds and h-rounds, between 76.1% and 94.9% of the time,

with no significant differences between o and h in any grade except 7th (p = 0.019). There

are significant differences across grades between 6th-7th grade and 10th grade in both o

and h, but they do not survive multiple comparison corrections.

Optimal choice is significantly lower in l-rounds than in h-rounds in all school-age

grades (p < 0.01 for 6th to 10th grade and p = 0.020 for 11th grade), and marginally

lower in the control population (p = 0.048). In l-rounds, we also observe that participants

in 10th and 11th grade perform significant better than participants in 6th and 7th grade

(p < 0.005 after multiple comparison corrections using false discovery rate controlling

procedures). The difference in equilibrium choice between h- and l-rounds is natural, since
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the former are intuitively easier than the latter. Indeed, in h-rounds, optimal behavior

prescribes offering the minimum price acceptable by both robots (v+), which is a very

simple strategy. In l-rounds, such instinct must be overcome as a non-profit maximizing

strategy, and this extra step of reasoning can be cognitively challenging. Its difficulty may

be exacerbated by the fact that choosing v+ still provides a positive payoff, so that its

sub-optimality might not be put to question.16 Overall, the results indicate a relatively

higher fraction of optimal behavior compared to the previous literature. Also, optimal

choice is less frequent when it prescribes foregoing the high value item.

3.2 Individual analysis

Although aggregate behavior is instructive, we are more interested in understanding choice

at the individual level. To this purpose, we classify individuals as a function of their

behavior in l and h and consider the following types. Rational (R) is an individual who

always offers the optimal price (v+ in l and v+ in h). High (H) is an individual who

would play optimally if all rounds were h (always offers v+). Low (L) is an individual

who would play optimally if all rounds were l (always offers v+). Semi-rational (S) is an

individual who understands that the only prices that can be optimal are v+ and v+ but is

not of one of the types above (offers v+ and v+ in some other proportions). Other (O) is

an individual who offers prices other than v+ or v+, and has therefore misunderstood the

basic principles of the game. To accommodate some minor deviations, we allow for one

deviation both in l-rounds and in h-rounds. This means that at least five out of six choices

must fall in the corresponding type.17 Figure 3a reports the proportion of individuals of

each type by grade in the entire population (332 participants). Figure 3b reports the same

information in the subpopulation of individuals who played correctly all three o-rounds

(76.6% of LILA students and 88.7% of USC students for a total of 263 participants).

Even our youngest school-age participants understand remarkably well the basic prin-

ciples of the treasure game. Indeed, only 3.0% (10th grade) to 25.5% (6th grade) of the

subjects offer prices other than v+ or v+. Furthermore, and as highlighted in Figure 3b, of

the 41 type-O subjects, the vast majority (37) are individuals who did not play correctly

the o-rounds. It means that individuals who understand the basic one-robot problem

invariably avoid any price other than v+i in the two-robot problem. The proportion of

rational subjects is higher in 8th, 9th, 10th and 11th grade than in 6th and 7th grade (p

16To disentangle between different motives for choosing v when it is not optimal, one could design
variants where (i) participants face three chests and/or (ii) choosing v in an l-round results in a negative
payoff (formally, by setting v − v > 2x).

17Small changes in the deviations allowed have no significant effects on the results. Those robustness
checks are omitted for brevity but available upon request.
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Figure 3: Types by grade

< 0.01 after multiple comparison corrections). Consistent with the findings in section 3.1,

a significant fraction of individuals (25.9%) choose v+ in every round (H) whereas very

few of them (2.7%) choose the more conservative v+ in every round (L). Overall, there is

a gradual shift from non-optimal v+i prices (H and S) to optimal v+i prices (R) with age.

There are also no statistically significant differences between 11th graders and U.

Among the 73 individuals classified as S, we observe all types of deviations: 46.6%

play optimally in h but not in l, 26.0% play optimally in l but not in h, and the rest do

not play optimally in either h or l. We did not find discernible patterns of play among the

41 participants classified as O: 1 subject offers prices between v+ and v+ in 8 rounds, 2

subjects offer prices above v+ in all rounds and the remaining 38 subjects offer prices in

the whole spectrum. Overall, these individuals appear lost, with no consistent behavior

or sign of improvement after feedback.

To our surprise, we found no evidence of dynamic learning by participants within

the 12 rounds of the experiment. Learning is a possibility only for S and O since, by

definition, the other types play the same strategy during the entire experiment. If we

focus on the last 8 rounds of the experiment, only 4 out of the 73 type S subjects are

reclassified as R and none of the O subjects is reclassified as any other type. The absence

of learning is consistent with the original findings in [CL] but contrasts with recent results

(Ali et al., 2021). It also departs sharply from our recent game theoretical studies with

children: our participants learn to play the dominant strategy the second time they play

the two-person beauty contest (Brocas and Carrillo, 2020b) and they also coordinate
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better in the fair and efficient dynamic outcome the second time they play the repeated

stag hunt or the repeated battle of the sexes (Brocas and Carrillo, 2021a). We find this lack

of learning especially intriguing, given our deterministic environment. Indeed, since we

provide feedback against both sellers, no counterfactual thinking is necessary, and offering

v+ in an l-round translates into an observed negative payoff against one of the robots. We

can think of three (a posteriori) explanations for this result. First, given the numerical

values adopted in our game, participants who offer v+ in an l-round obtain positive payoffs.

This may be enough to avoid triggering suspicion about the sub-optimality of the strategy.

Second, absence of learning is easier to understand when a participant offers v+ in an h-

round, since the choice results in an unrealized gain. Third, a more basic explanation

could be that learning is fully concentrated in o-rounds. When the individual reaches

the two-robot part of the experiment, they have already made up their mind about the

strategy for the remaining of the game, and do not consider revising it. In any case,

understanding the circumstances that facilitate learning to perform contingent reasoning

is an important area for future research.

Finally, it is informative to contrast our results with [MNV]. The exercise should be

taken with caution, not only because of the widely different populations (school-age and

college students vs. MTurk workers), but also due to the significant differences in design

and procedures.18 Since their treatment onevaluedet is closest to our design (and the one

where subjects performed best), we use it as the benchmark for comparison. In that

treatment, optimal behavior occurs 47.2% of the time, which is similar to our 10th and

11th graders (47.6%) and significantly lower than our undergraduates (70.4%, p = 0.001).

Prices other than v+i occur 26.4% of the time, which is comparable to our 6th graders.

It is higher than all other school-age participants grouped together (11.2%, p < 0.001)

and also higher than our undergraduates (5.6%, p < 0.001). Finally, the simple one

firm setting is solved correctly by 62.6% of subjects, which is significantly smaller than

our school-age subjects (76.6%, p < 0.001) as well as our college students (88.7%, p

< 0.001). In general, and with the above mentioned important caveat in mind, departures

from theory are typically smaller both in our control group and in our older school-age

participants than in the existing literature on adults. The comparison highlights the

importance of running a control adult group with the same procedures to provide the best

possible benchmark. It also validates our choice of focusing on the deterministic problem:

while [MNV] convincingly show that probabilistic thinking is a major hurdle for optimal

behavior, contingent reasoning is already difficult (and therefore worth of a developmental

18Our in-person, graphical instructions and quiz together with our additive formulation and feedback are
likely to facilitate understanding. On the other hand, the smaller number of periods and the intertwining
of l- and h-rounds could presumably make our game more challenging.
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study) in the deterministic version.

3.3 Regression analysis

We perform OLS regressions of choices–where the observation is one individual–to better

understand the determinants of optimal play. Since our main interest is the developmen-

tal aspect, we consider only the 261 subjects in the school-age population (LILA).19 In

column (1), we report for each individual the proportion of optimal choices in h-rounds

(v+) and the proportion of optimal choices in l-rounds (v+) as a function of the partici-

pant’s Age (in months) at the time of the experiment. We include a dummy variable for

l-rounds (to distinguish between performance in those qualitatively different rounds) as

well as an interaction term between age and performance in l-rounds. We also add as a

control variable the proportion of correct answers in the simple o-rounds, correct-o. In col-

umn (2), we include dummy variables for gender (Male = 1), whether the participant has

one or more siblings (Siblings = 1), and favorite topic at school to account for analytical

inclination (STEM = 1), as well as interactions terms of these variables with performance

in l-rounds.20 Finally, column (3) performs the same regression as (2) but only in the sub-

sample of 200 individuals who answered correctly the three initial o-rounds. Presumably,

those participants had understood best the core principles of the game (naturally, we do

not include the variable correct-o). Results are presented in Table 2.

Consistent with the trends in Figure 2, performance in l-rounds is much lower than

in h-rounds, and behavior improves with age but only in l-rounds, whether we include

control variables (column 2) or not (column 1). The improvement is constant, and males

perform better than females but only in the more difficult l-rounds.21 This is in sharp

contrast with our previous research in dominance-solvable games (Brocas and Carrillo,

2021b), where females outperformed males and behavior reached a plateau by middle

school. Interestingly, a better performance by males is also reported in [MNV] on a very

different population. We found no effect of siblings or preferred school topic. Performing

correctly the simplest o-rounds is a very strong predictor of optimal behavior in h- and

l-rounds. This is not overly surprising since only individuals who price accurately against

one robot are likely to choose v+i against both.22 Results are very similar when we restrict

19We cannot add the USC population since we did not collect their age. Even if we knew their age, we
would not want to include them in the regression as it could severely impact the age-trend. We view these
subjects as a good control group but not as an extension of the school-age population.

20STEM refers to a self-reported preference for either Mathematics or Science/Technology. Consistent
with the curriculum of the school, the three other categories offered are Languages, History/Geography
and Arts/Music, which we globally refer to as ‘Arts & Humanities’.

21There is no gender difference in the simplest o-rounds either (regression omitted for brevity).
22We performed a robustness check by running additional regressions where correct-o is replaced by a
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(1) (2) (3)

Age 0.001 0.001 0.001
(0.001) (0.001) (0.001)

correct-o 0.169∗∗∗ 0.169∗∗∗ —
(0.014) (0.014)

l-round -1.000∗∗∗ -0.981∗∗∗ -1.247∗∗∗

(0.243) (0.245) (0.288)

Age × l-round 0.004∗∗ 0.003∗ 0.005∗∗

(0.001) (0.001) (0.002)

STEM — -0.008 -0.024
(0.032) (0.033)

STEM × l-round — 0.059 0.085
(0.064) (0.074)

Male — 0.020 -0.013
(0.031) (0.032)

Male × l-round — 0.173∗∗ 0.150∗

(0.062) (0.074)

Siblings — -0.003 -0.001
(0.037) (0.037)

Siblings × l-round — -0.019 -0.023
(0.081) (0.094)

Constant 0.193 0.191 0.729∗∗∗

(0.121) (0.125) (0.113)

Adj. R2 0.359 0.371 0.289
# observations 522 522 400
# clusters 261 261 200

(standard errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 2: OLS regressions of proportion of optimal choices in l-rounds and in h-rounds by school-
age participants in the entire sample ((1) and (2)) and by the subset of participants who answered
correctly the o-rounds (3).

attention to individuals with perfect understanding of o-rounds (column 3).

In order to better understand the determinants of rational play, we conduct a multi-

nomial logistic regression of the participants’ type on their age as well as the previous

dummies for gender, siblings, and STEM inclination. The default category in that re-

gression is type S. The results reported in Table 3 indicate that the likelihood of being

categorized as R instead of S is positively related to age. It is also more likely when the

participant is male and has a preference for STEM.23

dummy variable with value 1 for subjects who play all three o-rounds correctly. The results are unchanged.
23We also created a dummy variable for each possible type (R, H, L, S, O) and performed independent

Probit regressions to explain the probability of being categorized as each of these types on the same
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R H L O

Age 0.028∗∗∗ -0.003 -0.004 -0.010
(0.009) (0.009) (0.019) (0.011)

STEM 0.647∗ 0.212 1.301∗ -0.105
(0.376) (0.368) (0.790) (0.465)

Male 0.813∗∗ -0.352 1.246 0.127
(0.367) (0.348) (0.864) (0.420)

Siblings -0.645 -0.579 -0.825 -0.622
(0.483) (0.452) (0.911) (0.530)

Constant -4.814∗∗∗ 1.318 -2.180 1.494
(1.597) (1.489) (3.237) (1.834)

AIC 747.4 747.4 747.4 747.4
# obs. 261 261 261 261
(standard errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 3: Multinomial logistic regression of type on demographic variables (default = type S)

3.4 Discussion

Optimal behavior in the treasure game requires several steps. First, to apply conditional

reasoning in order to determine the set of offers each seller is willing to accept (above v

for one seller and above v for the other). Second, to understand that the best course of

action vis-a-vis each seller is to offer the lowest price in the set, that is, to realize that

v and v are the only candidates for optimal prices. Last, to determine in each round

which of these two prices yields the highest payoff, taking into account the output of the

conditional reasoning stage. This recursive reasoning, which uses as input the output of

the two previous stages, itself requires counterfactual logic (“what would have been my

payoff had I instead chosen the other price”). Our results show that the overwhelming

majority of participants at all ages (with the exception of some 6th graders) successfully

solve the first two steps. By contrast, solving the third step is more challenging, and there

is a sustained increase with age in the proportion of individuals who are successful at it.

One reason for the inability to optimally discriminate between the two prices can be

computational: participants know what they need to compute but they make algebraic

mistakes. Our additive formulation was intended to minimize this possibility by reducing

the operations to addition, subtraction and comparison. We also did not constrain the

amount of time spent on each round. While computational difficulty may account for a

independent variables. These regressions confirm that the the probability of being categorized as R instead
of not R is correlated with age.
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small fraction of mistakes, it is unlikely to be a major driving force for individuals who

err frequently, especially those who always choose the same price (types L and H).

Alternatively, it may just be cognitively difficult to use conditional statements in a re-

cursion that requires counterfactual logic. The improvement of performance with age may

correspond to the known development of abstract thinking (counterfactual or conditional)

during that period (De Neys and Everaerts, 2008; Rafetseder et al., 2013). As we grow,

we become more able to combine logical pieces of reasoning into a broader logical puzzle.

The stability of types between the first and second half of the experiment suggests that

participants crafted strategies and sticked to them. These strategies contained elements

of logic, a strong indication that participants tried to apply a logical argument.

However, the stability of types also shows that participants did not learn or adapted

(even mechanically) to the empirical observation of past outcomes. This might have been

partly caused by our payoff structure. Indeed, while there is an opportunity cost of

choosing suboptimally, payoffs under v and v are always positive. This makes it less likely

to trigger suspicion about the existence of a better alternative.

4 Other analysis

4.1 Deterministic vs. stochastic presentation

Remember that, immediately after the paid rounds, we elicited (non-incentivized) behav-

ior in a deterministic and a probabilistic version of the treasure game.24 This simple

(but obviously imperfect) procedure allows us to obtain a rough measure of the power of

certainty. We selected values in such a way that the optimal price is v in both cases.25

Figure 4a reports the fraction of participants in each grade who answered correctly both

questions (both), only the deterministic (det), only the probabilistic (prob) and none

of them (none). Figure 4b presents those same fractions as a function of the individual’s

type in the main experiment.

From Figure 4a, we notice that the evolution with age of individuals who respond cor-

rectly to both questions follows the same pattern as the evolution of R types in Figure 3a:

a sustained increase (in this case, from 25% to 75%) with significant differences between

6th-7th and 10th-11th (p < 0.030). Less than one in four students answer correctly exactly

one question and, in support of [MNV], the correct answer is statistically more frequent

24As explained in Appendix A3, we implement the probabilistic version with the following instructions.
“You are matched either with the top computer or the bottom computer, but you do not know which
one of them. There is an equal chance it is either of them. However, you have to make your offer before
knowing with which computer you are matched.”

25We assumed (correctly given the results in section 3) that it was more difficult to play correctly in
l-rounds than in h-rounds.
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Figure 4: Choice in the deterministic and probabilistic questions

with the deterministic presentation than with the probabilistic one (14.5% vs. 8.4%, p

= 0.020). Figure 4b highlights the tight relationship between choices in the incentivized

task and questionnaire: both is highest among R followed by S. Individuals who always

choose v+ (H) or prices other than v+i (O) rarely answer the questions correctly.26

Among subjects with an incorrect response to the deterministic question (prob and

none), 80.0% offer v+ in that question and the rest offer prices in the whole spectrum.

Among subjects with an incorrect response to the probabilistic question (det and none),

72.9% offer v+ in that question and 9.3% offer (v+ + v+)/2. Hence, there is a small

but positive “cursedness” effect (offer the average value), which arises only under the

probabilistic presentation.

In the questionnaire, we also asked our participants to report if they believed they had

made the best possible offer (Yes / Maybe / No), in an attempt to elicit the confidence in

their answer. Figure 5 reports their confidence as a function of their choice.

Participants are significantly more confident in the correctness of their response in the

deterministic case (left) than in the probabilistic one (right). This is true not only for

individuals who answer both questions correctly (79.3% vs. 48.2%, p < 0.001), but also

for the others (45.2% vs. 23.8%, p < 0.001). Again, it supports the argument in [MNV]

that uncertainty adds difficulty to contingent reasoning. In our case, probabilistic vs.

deterministic implies a small difference in choice but a larger one in confidence.

26Type-L individuals also answer the questionnaire correctly. However, there are only 9 subjects. Also,
it is possible that they use a heuristic (always offer v+) that “coincides” with the optimal choice in our
two questions.
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Figure 5: Confidence in correctness of their choice

4.2 Backwards Digit Span Task

The Digit Span Task has been frequently used in Psychology and Neuroscience to measure

working memory, the ability to retain and manipulate information for a brief period of time

(less than 30 seconds) during a cognitive task.27 Working memory is recognized as a specific

contributor to fluid intelligence and the Digit Span Task is administered as a section of

intelligence tests in children, as well as in adults, such as the Wechsler’s Intelligence

Scale (Wechsler, 1949). The task has been rarely used by experimental economists, who

favor instead other tasks that provide more general assessments of fluid intelligence, most

notably different versions of the Raven’s IQ test (see e.g., Brañas-Garza et al. (2012); Gill

and Prowse (2016); Proto et al. (2019, 2020); Fe et al. (2020)). Performances in Raven

and Digit Span are often correlated. This is not surprising given that solving the logical

puzzles in the Raven’s test requires working memory among other abilities. We view

both tests as complementary and advocate expanding the use of different measures as a

rich way to assess cognitive ability. Perhaps one advantage of the Digit Span Task is its

narrower focus on one particular primitive ability, which allows us to determine whether

working memory is or is not a contributor in the performance of the decision making

task. Importantly, the development of abstract, counterfactual and conditional thinking

(which our paradigm relies on) has been shown to depend on the ability to maintain and

manipulate information in working memory (Handley et al., 2004; Dumontheil, 2014).

27For the reader unfamiliar with the Psychology and Neuroscience literatures, it is worth clarifying that
working memory does not relate to the traditional definition of memory, that is, the ability to recall events
from the past. Instead, it is a cognitive processing ability that involves very different areas of the brain.
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Although the original version of this task was verbally administered, recent versions

typically use a computer interface. The task exists in two variants: forward-span and

backward-span. The backward-span version requires the participant not only to hold the

digits longer in their working memory but also to manipulate them because they need to

be reordered. It is considered a better measure of working memory capacity (Oberauer

et al., 2000). It has also been shown that the ability to perform well on this additional

difficulty of the task can be linked to general intelligence (Jensen and Figueroa, 1975).

Figure 6 describes our implementation. Participants observe a sequence of digits in

the top of their screen. Digits appear sequentially for 0.5 seconds with an interval of 0.75

seconds between digits. After all digits have appeared, participants must report them in

reverse order by consecutively typing one digit in each box from left to right and pressing

OK.28 We start the task with three digits and increase the sequence by one digit every two

trials until we reach eight digits, for a total of twelve trials. Participants obtain points in

a trial only if they report the entire sequence correctly.

Figure 6: Screenshot of the backwards Digit Span Task

Table 4 reports the average performance in each grade by counting the percentage of

trials that the participant performs correctly.29

The percentage of correct trials in the school-age population is significantly lower than

in the control undergraduate group. While performance in the Digit Span Task is valuable

28Participants are obviously not allowed to use any external support (such as writing down the digits).
They cannot input the digits as they appear, input them in forward order from right to left, or change a
digit after it has been typed. By waiting to press “OK”, participants can pace the task and enjoy a break
between trials.

29It is frequent in Psychology to assess performance by stopping the first time a report is incorrect. Our
method is more permissive with mistakes. It also adapts better to our task since all trials are incentivized
and performance feedback is obtained only at the end of the experiment. If we adopt the standard
methodology, the average span is 3.08 for our school age students and 4.16 for our undergraduates. These
numbers are comparable to existing studies reporting averages between 3 and 4 in children and adolescents
(Hale et al., 2002) and between 4 and 5 in adults (Gignac, 2015).
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LILA USC
Grade 6th 7th 8th 9th 10th 11th U
Correct 40.2 45.3 45.6 47.0 52.5 54.8 70.1

Table 4: Average percentage of correct trials in Digit Span Task by grade

in itself, we are more interested in correlating it with behavior in our main task. Optimal

performance in the treasure game necessitates the combination of several abilities. First,

the individual must realize that offers other than v+ (in o) and v+i (in h and l) are

necessarily suboptimal. Then, the subject must be able to determine which offer among

v+ and v+ maximizes payoffs depending on the round. To find out which abilities correlate

with working memory ability, we perform OLS regressions at the individual level, where

the dependent variable is performance in the Digit Span Task. We consider only school-age

participants and use as regressors Age in months and the same control variables as before

(gender, siblings and favorite topic). We also include a combination of performance in o

and l (column (3)) or performance in h and l (column (4)) to measure the contribution

of the different cognitive abilities. Notice that we do not include performance in o and h

in the same regressions since we know from Table 2 that these two measures are highly

colinear. The results are reported in Table 5.

Confirming the existing results in the literature (Gathercole et al., 2004), performance

in the Digit Span Task increases significantly with age. Individuals with an inclination for

analytical topics (self-reported preference for STEM) perform better. Most notably, there

is a positive association between optimal choice and working memory. This is particularly

visible for choice in the simpler o- and h-rounds, which both very significantly predict

performance in the Digit Span Task. The positive but statistically less significant effect of

performance in l-rounds suggest that working memory also supports, although to a lesser

extent, the more subtle step that consists in discriminating between v+ and v+.

Given that the (potential) link between working memory and contingent reasoning is

correlational, our next set of regressions uses performance in the Digit Span Task as an

explanatory variable of the participant’s type in the treasure game. Participants classified

as O have the lowest scores (4.35) while those classified as R have the highest scores

(6.33). The score of O types is significantly lower than that of H, S and R and the

differences between H and R are also significant (p < 0.04 after correcting for multiple

comparisons). Naturally, these effects are partly driven by age differences across types.

To control for age effects, we present in Table 6 a multinomial logistic regression of the

type of each participant similar to the one reported in Table 3. However, we group types

L, H and S in one category to increase statistical power (the new default), and we add
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(1) (2) (3) (4)

Age 0.026∗∗∗ 0.026∗∗∗ 0.023∗∗∗ 0.021∗∗

(0.007) (0.007) (0.007) (0.007)

STEM — 0.718∗∗ 0.592∗ 0.624∗

(0.273) (0.271) (0.270)

Male — -0.385 -0.382 -0.421
(0.264) (0.265) (0.263)

Siblings — -0.590 -0.596 -0.582
(0.325) (0.319) (0.319)

correct-o — — 0.403∗∗ —
(0.155)

correct-h — — — 0.197∗∗

(0.072)

correct-l — — 0.066 0.110∗

(0.058) (0.055)

Constant 1.362 1.606 1.031 1.316
(1.104) (1.097) (1.143) (1.111)

Adj. R2 0.054 0.094 0.111 0.114
# obs. 261 261 261 261
(standard errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 5: OLS regressions of individual performance in the Digit Span Task as a function of
demographic variables and performance in the treasure game

the performance in the Digit Span Task as an independent variable (DigitSpan).

Table 6 reinforces the results from Table 5. After controlling for age and other individ-

ual characteristics, we still observe that performance in the working memory task is lower

by O subjects and higher by R subjects. The result indicates that a better working mem-

ory helps performance significantly, especially in the simpler rounds. At the same time,

it is not sufficient for optimal behavior, and other cognitive processes are also involved in

the calculations required by contingent reasoning. This finding has implications for the

study of complex games that require a priori sophisticated logical skills.

Last, note that while we are primarily interested in the developmental trajectory of

performance in contingent reasoning and how working memory affects it, we have observed

that gender and topic preferences are also often significantly associated with the main

measures. These effects may be overestimated due to measurement errors and imperfect

correlations between explanatory variables. We address these issues in Appendix C and

confirm the significant association between gender and complex contingent reasoning, as

well as the association between topic preference and working memory.
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O R

Age -0.001 0.028∗∗∗

(0.010) (0.008)

STEM -0.172 0.359∗

(0.420) (0.318)

Male 0.036 0.953∗∗∗

(0.388) (0.315)

Siblings -0.477 -0.199
(0.458) (0.387)

DigitSpan -0.288∗∗∗ 0.124∗

(0.101) (0.074)

Constant 0.564 -6.620∗∗∗

(1.645) (1.393)

AIC 467.466 467.466
# obs. 261 261
(standard errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 6: Multinomial logistic regression of types on demographic variables and performance in
the Digit Span task (defaults = L, H and S)

5 Conclusion

Our study shows that performance in deterministic problems involving contingent reason-

ing is critically linked to the complexity of the task. The most basic aspects are grasped

even by our youngest participants but the ability to solve the most subtle aspects develops

gradually with age. It is not facilitated by repeated exposure or feedback. A higher score

in working memory is positively associated with performance.

The study approaches contingent reasoning from a developmental perspective. It brings

further evidence that age plays a critical role in the development of strategic thinking.

Previous studies have shown that children develop inductive logic between the ages of 8

and 12 (Feeney and Heit, 2007) and the ability to perform hypothetical and counterfactual

thinking between the ages of 11 and 14 (Piaget, 1972; Rafetseder et al., 2013; De Neys

and Everaerts, 2008). Observing that conditional reasoning abilities develop during that

time period and beyond is consistent with that evidence. On the other hand, we have

recently reported a steep development throughout elementary school (ages 6 to 11) and a

lack of improvement past that period in backward induction games (Brocas and Carrillo,

2021b). Stagnation occurs even though the ability is not necessarily mastered at that age,

indicating that children may have reached a cognitive bound. In other research on games

of strategy, we have also documented no improvement with age in optimal randomization
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in hide and seek games (Brocas and Carrillo, forthcoming). The significant improvement

in our treasure game during middle and high school contrasts with that evidence, and

implies that developmental trends and cognitive boundaries are situation-specific. It also

suggests that age effects may extend beyond adolescence into young adulthood.

Despite the caveats noted, the results obtained here are consistent with [MNV]. Our

oldest school-age participants and undergraduates perform better than in the traditional

‘acquire-a-company’ game. There is no evidence of cursedness, indicating that this be-

havioral feature may be tightly linked to uncertainty. The increased performance of our

subjects relative to the deterministic game in [MNV] is likely due to our higher control

level and more educated population (lab-in-the field experiment with a homogenous pop-

ulation of private school high schoolers and college undergraduates vs. MTurk workers) as

well as the simpler, graphical design. Finally, the responses of participants support the

idea that uncertainty is an added obstacle to optimal performance.

Our study helps clarify the contribution of several components of contingent reasoning

in the context of adverse selection games. [MNV] have argued that contingent reasoning

can be decomposed into uncertainty and computational complexity. By removing uncer-

tainty, the problem is simplified and performance depends on the ability to make complex

calculations. We take a different stand and argue instead that the problem deprived from

uncertainty incorporates the same qualitative reasoning difficulties as the original prob-

lem. It can be decomposed into different logical requirements: conditional thinking (“if a

seller is of a certain type, they will accept that set of offers”), recursive logic (“given the

set of offers acceptable by the seller, what is the optimal price to offer?”), counterfactual

thinking (“what about a seller with a different type?”) and further recursive thinking to

combine the outputs of the previous pieces into a comparison of type-dependent optimal

strategies. Our results show that difficulties relate to recursive and counterfactual logic,

not to conditioning per se. Algebraic or other basic computational difficulties also seem

to have a limited effect. Furthermore, since recursive and counterfactual thinking abil-

ities improve during adolescence and they heavily tax working memory (which develops

at the same time), we observe that performance progresses gradually over that period.

Overall, working memory turns out to be an essential contributor to the recursive and

counterfactual thinking abilities involved in adverse selection games.

The data reveals an unexpected gender difference. Conditional reasoning is a logical

ability and there is no evidence of a specific gender bias in the literature studying logic,

cognition and IQ. At best, results are mixed and differences are typically small (Lynn

and Irwing, 2004; Reynolds et al., 2008). Still, gender differences have been observed in

game theoretic settings involving steps of reasoning in adults (Cubel and Sanchez-Pages,

2017) and children (Brocas and Carrillo, 2021b). Depending on games and treatments,

23



males or females may perform better. It is, however, intriguing and worthy of further

investigation that the same gender effect is present in our study and in [MNV], despite

the very significant differences in the populations studied.

Participants with a preference for science tend to have a higher performance in the

working memory task, which in turn affects performance in the contingent reasoning task.

This is consistent with the literature showing that working memory is associated with

academic achievement in science-related topics (Alloway and Alloway, 2010; Swanson,

2011) and with studies showing a relationship between high cognition and performance

in games (Brañas-Garza et al., 2012; Gill and Prowse, 2016; Proto et al., 2019, 2020; Fe

et al., 2020). It is also in line with our earlier research where we showed that a preference

for science is associated with better performance and higher payoffs (Brocas and Carrillo,

2021b). The present study also suggests that a highly developed working memory capacity

is a necessary condition to solve complex reasoning tasks, although it may not be sufficient.

Our results also illustrate the methodological value of studying basic cognitive abil-

ities and assessing their relationship with performance in games. There is converging

evidence that cognition and decision-making go hand-in-hand. Cognitive development

and age-related changes in decision-making cannot be dissociated. Basic cognitive func-

tions refer to simple processes such as working memory (the ability to manipulate pieces

of information) and inhibitory control (the ability to reject distracting or irrelevant fea-

tures). These functions are recruited to complete simple cognitive tasks (such as number

manipulation and mental rotation of objects) but also complex cognitive tasks (such as

contingent reasoning and deductive logic). Decision-making is a form of complex cognitive

activity, which often combines several kinds of logic to be carried efficiently. Therefore,

non-compliance to central predictions of theory may be traced to several fundamentally

different causes. Testing cognitive abilities independently allows us to identify which fea-

ture of the decision poses a problem.30 In our case, low performance in working memory

accounts for a large part of suboptimal choices. It suggests that it is important to link

non-equilibrium play to limitations of higher-level cognitive skills (e.g., working memory,

cognitive flexibility, inhibitory control) that control and coordinate lower-level logical abil-

ities (e.g., logical deductions) and behavior. We believe that a better understanding of the

relative contribution of each high-level skill has long range implications for the design of

behavioral models. Also, while studying the relationship between basic cognitive abilities

and decision-making is particularly interesting in children, it should also be enlightening

30There exists a large variety of tasks that assess cognitive functions. Some are specific, such as the Digit
Span task and its homologue spatial form the Corsi task. Their objective is to diagnose a well-defined
ability. Others are general, such as IQ tests. Their objective is to provide a score regarding the overall
cognitive level of a person.
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in studies with adults.

The results have vast implications for policy intervention. Indeed, contingent reasoning

is ubiquitous in strategic interactions. Developing this ability is critical to assess the

motivations of others and to anticipate their reactions to our choices. A person who

does not apply contingent reasoning properly can be taken advantage of by people who

misrepresent their intentions. This is particularly problematic in the case of adolescents,

a population often targeted by cyber threats and scams. Our results–which demonstrate

that contingent reasoning is developing during adolescence–suggest that intervention is

needed to protect teens in situations they are not equipped to handle.
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Maŕıa Cubel and Santiago Sanchez-Pages. Gender differences and stereotypes in strategic

reasoning. The Economic Journal, 127(601):728–756, 2017.

Simon Czermak, Francesco Feri, Daniela Glätzle-Rützler, and Matthias Sutter. How
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Appendix A. Experimental details

A1. Instructions - LILA

Today, we are going to play a few games with you. In those games, you will earn points that
will be converted into money and placed in your virtual wallet. Each point is worth 2 cents. At the
end of the session, we will send to your LILA email address an Amazon gift card with the money
you earned. You will start with 300 points, so $6.00.

Treasure Game

In this game you will play against robots. Robots are computer programs that play in a
predetermined way. We are going to tell you how. Here is an example. This is the computer you
are playing with [point] and this is you [point] (see Figure 7 for the slides).

[ slide 1: screen with one robot ]

The computer owns a treasure box. The box has two compartments, an upper compartment
and a lower compartment. There are points in each compartment [point]. However, the computer
does not have the key of the lower compartment and cannot access the points placed there. So,
even though the computer knows how many points there are in the lower compartment, the box
for the computer is worth only the number of points in the top compartment.

Now, you do have the key of the lower compartment. So, if you buy the treasure box, you will
be able to access it. This means that the box is worth to you the points in the upper and lower
compartments.

To buy a box, you need to make an offer to the computer, and the offer has to be accepted.
Remember that, for the computer, the box is worth only the number of points in the top compart-
ment. If the offer it receives is equal or above that number, it will accept the deal. Otherwise,
there will be no deal. The computer is programmed, so this is an automatic rule.

Each time you make an offer, you will know if the trade occurs and how much money you win
or lose. Let’s look at what can happen.

[ slide 2: screen with one robot and deal ]

If you offer 60 (and this is just an example), the computer will accept it and you will be notified
that there is a deal. You will also learn how many points you earned. In this case, 70 − 60 = 10
points.

[ slide 3: screen with one robot and no deal ]

But, if you offer 40 (and, again, this is just an example), the computer will not accept it and
you will be notified that the there is no deal. In that case, you will earn 0. To sum up, if your
offer is not accepted, you get 0. If your offer is accepted, you accumulate points on your wallet.

Now, there are two types of trading games. At the beginning, you will play with one computer,
as we have just described. After a few rounds, you will play with two computers. In that case, you
will see a screen like this.

[ slide 4: screen with two robots ]

This is you and these are the two computers you are playing with. What is important to
realize is that you have to make the same offer to both computers. Each computer sees the offer
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and decides whether to accept the deal or not. As before, each computer accepts your offer if it
is equal or greater to the number of points in the upper compartment. Therefore, it may be that
no computer accepts your offer, one computer accepts your offer and the other doesn’t or both
computers accept your offer. This also means that you may win points with both computers, or
you may lose with some computer. If this happens, don’t worry. The points we give you in advance
will cover your losses. Finally, your offer can never exceed the total value of the most valuable box.
In this example, you cannot offer more than 70.

Practically speaking, you need to enter your offer in one cell and the other will automatically
be populated. You are going to play several rounds. Each time, the boxes will have different values.
Is that clear?

Before playing, you will answer a short quiz. This is not a test. We are just trying to make
sure you have understood the rules because it is important to understand the rules when you play
a game. All the questions in the quiz refer to this screen.

[ slide 5: screenshot for quiz ]

[Launch quiz] - [When quiz is done] OK, now we will launch the game. You will be playing
several times [Launch game]

The game is over, but we would like you to answer two questions about the game. Read
carefully. In the first question, you will see a screenshot like the one in the game you have been
playing. In the second question, you will see a screenshot slightly different. The rules are the same
as before except that you are playing against one of the two computers, but you do not know which
one (each of them is equally likely) [Launch questions]

Digit memory game

In this game, you will see digits, one at a time, on your screen. Each digit will appear for
half a second. Then, a new digit will appear after a little bit less than a second. You need to pay
attention to the digits and the order in which they are shown because you will have to report them
in the reverse order and press OK. Here is an example:

[ slide 6: launch video 1 ]

What were the digits? 4 - 8 - 3. Good, so you need to enter them in reverse order: 3 - 8 - 4,
and press OK as in the following video.

[ slide 7: launch video 2 ]

You will start with 3 digits and keep increasing until you get to 8 digits. Each time you enter
the correct answer, you will earn 20 points and each time you don’t enter the correct answer, you
will get 0 points, so pay attention! As in the video, the cursor will be automatically set in the left
box. Once you input a digit, you will not be able to change it, and the cursor will automatically
move to the next box. When you are done, press OK to move to the next set of numbers. Any
questions? Please be very quiet during this game [Launch game]

We are done. You will now see the number of points you got in the Treasure game and in the
Digit Memory game. You don’t need to memorize them. Press OK and fill the questionnaire while
we prepare your payment [Launch final questionnaire].
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Figure 7: Slides used for the instructions
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A2. Quiz

[Questions refer to the screenshot projected in SLIDE 5. Correct answers marked in bold].

Suppose you observe this screen, answers the following questions.

1. How many offers can you make?
a. You have to make the same offer to both computers
b. You can make different offers to each computer
c. It doesn’t say

2. Suppose you offer 65 to each computer. What happens?
a. No Deal with top computer and No Deal with bottom computer
b. No Deal with top computer and Deal with bottom computer
c. Deal with top computer and No Deal with bottom computer
d. Deal with top computer and Deal with bottom computer

3. Suppose you offer 50 to each computer. How many points do you get in your relationship with
the top computer (for this exercise do not count what happens with the bottom computer)

a. There is a deal and you win 5 points
b. There is a deal and you win 10 points
c. There is a deal and you lose 5 points
d. There is no deal so you get 0 points

4. Suppose you offer 50 to each computer. How many points do you get in your relationship with
the bottom computer (for this exercise do not count what happens with the top computer)

a. There is a deal and you win 5 points
b. There is a deal and you win 10 points
c. There is a deal and you lose 5 points
d. There is no deal so you get 0 points

A3. Two-part, non-incentivized questionnaire
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A4. Payoff combinations in the treasure game

Table 7 reports the payoffs in each chest for each of the 15 rounds. Values in bold

reflect the optimal offer in that round.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chest 1 upper 45 15 30 20 40 60 40 25 50 30 45 40 20 30 30
lower 10 20 15 10 15 20 15 15 20 10 15 15 20 15 8

Chest 2 upper – – – 25 30 30 15 15 40 45 20 30 35 10 40
lower – – – 10 15 20 15 15 20 10 15 15 20 15 8

Table 7: Payoffs by compartment and chest

Appendix B. Summary of behavior in other populations

Table 8 provides a descriptive summary of the behavior by the 8 math teachers at LILA

(Teachers) and the 11 Master students at USC (Masters).

Optimal play Type
o-round h-round l-round R H L S O

Teachers 1 0.9 0.58 0.25 0.25 0.00 0.50 0.00
Masters 0.79 0.76 0.68 0.55 0.18 0.09 0.09 0.09

Correct question Confidence Det. Confidence Prob.
both det prob none Yes Maybe No Yes Maybe No

Teachers 0.75 0.125 0.00 0.125 0.62 0.38 0.00 0.25 0.75 0.00
Masters 0.73 0.00 0.00 0.27 0.91 0.09 0.00 0.55 0.36 0.09

Table 8: Summary statistics of behavior by Teachers (LILA) and Masters (USC)

The samples are extremely small to make meaningful inferences. Also, these two

populations are relatively heterogenous (in particular, USC master students come from

very different intellectual backgrounds). The results, however, indicate that Teachers and

Masters do not behave very differently from 11th grades and undergraduates.

Appendix C. Robustness

Two potential issues may bias the coefficients obtained in the regression analysis of

section 4.2. First, some of the exogenous variables are correlated to some extent. Second,

our behavioral measures, the main variables of interest, are subject to measurement errors.
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A fix for the latter problem is to duplicate measures and use one to instrument the other

(Gillen et al., 2019). Because we have not designed our experiment to allow for that

possibility, we cannot use that specific method. However we can provide a few analyses

designed to better account for the two issues above.

The OLS regression in Table 5 reports a consistent significant effect of the control

variable STEM on the endogenous variable. In those regressions Age, correct-o, correct-h

and correct-l are correlated to some extent, and the last three also suffer from measurement

errors. A simple way to better assess the effect of STEM is to run a principal component

analysis of the four imperfectly correlated variables, then run a regression on the principal

components and control variables. Coefficients on the principal components are not readily

interpretable, but the method ensures that the regressors are independent. For our case,

the first principal component (PC1 ) explains 44% of the variance, the second (PC2 ) 28%,

and the third (PC3 ) 19%. We retain these three for the regression analysis. Table 9 shows

that STEM continues to be associated with performance in the Digit Span Task, while

Male and Siblings continue to not be associated with performance in the Digit Span Task.

(1) (2) (3)

STEM 0.663∗ 0.618∗ 0.602∗

(0.270) (0.269) (0.270)

Male -0.414 -0.362 -0.393
(0.261) (0.260) (0.263)

Siblings -0.609 -0.595 -0.589
(0.320) (0.317) (0.318)

PC1 -0.091∗∗∗ -0.237∗∗∗ -0.246∗∗∗

(0.019) (0.065) (0.066)

PC2 — 0.082∗ 0.055
(0.035) (0.050)

PC3 — — -0.031
(0.042)

Constant 0.791 0.826 1.062
(1.078) (1.069) (1.116)

Adj. R2 0.105 0.120 0.118
# obs. 261 261 261
(standard errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 9: OLS regressions of individual performance in the Digit Span Task as a function of
demographic variables and principal components

Variables Age and DigitSpan are also imperfectly correlated in the multinomial logistic
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regression in Table 6. We can therefore perform a similar principal component analysis.

Table 10 presents the alternative multinomial regression with one principal component

(PC, which explains 62% of the variance) replacing the variables Age and DigitSpan in

Table 6. As in the previous regression, males are still more likely to be classified as

rational. On the other hand, the effect of STEM is no longer significant. A similar result

is achieved with an instrumental variable approach, whereby one first regresses DigitSpan

on demographic variables (first step) and then uses the predicted DigitSpan value in the

multinomial logistic regression (second step).31

O R

STEM -0.290 0.427
(0.413) (0.312)

Male 0.248 0.933∗∗∗

(0.373) (0.313)

Siblings -0.242 -0.258
(0.440) (0.383)

PC 0.015∗∗∗ -0.043∗∗∗

(0.014) (0.011)

Constant 0.506 -6.619∗∗∗

(1.641) (1.378)

AIC 475.580 475.580
# obs. 261 261
(standard errors in parenthesis)
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 10: Multinomial logistic regression of types on demographic variables and principal com-
ponent (defaults = L, H and S)

Overall, the results suggest that gender and topic preferences influence task perfor-

mance differentially. While gender is consistently associated with behavior in the treasure

game (Tables 2, 3, 6 and 10), topic preference seems to impact primarily performance in

the Digit Span Task (Tables 5 and 9), and influences behavior only indirectly.

31In our case, the instrument is weak. We ran the procedure including the residuals from the first step
into the second regression as suggested by Terza et al. (2008).
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