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had monetary incentives to target the true time in the first (baseline) task, not to exceed
the true time in the second task and not to fall below the true time in the third task. We
found that participants overestimated time in all tasks but responded correctly to incen-
tives: they decreased their estimates in the second task and increased them in the third.

JEL classification:

91 Participants’ self-assessment in the baseline task was in line with their time perception bi-
D83 ases, and their behavior in the other tasks was consistent with their (correct) beliefs. Self-

perceived over-estimators decreased their estimates in the second task significantly more
Keywords: relative to self-perceived under-estimators, while in the third task they increased their es-

Time perception
Decision-making
Self-awareness

Metacognition © 2018 Elsevier B.V. All rights reserved.

timates significantly less. Last, we explored the effect of physiological stress by having half
of our population complete the Cold Pressure Task and found no significant effect.

1. Introduction

How did it get so late so soon? - Dr. Seuss

The literature in psychophysics documents how we make time evaluations and demonstrates that our subjective assess-
ments of the time that passes may be inaccurate. When individuals are explicitly given time targets, discrepancies between
objective time and subjective time are observed as a function of the time duration range - below or above 1 s —, but also
the specific task design (Grondin, 2010, 2014; Wearden and Lejeune, 2008). Furthermore, emotional states (Droit-Volet and
Meck, 2007; Droit-Volet and Wearden, 2002; Fayolle et al., 2015), attentional constraints (Buhusi and Meck, 2006), drug
usage (Wittmann et al., 2007) and incentives to be accurate (Akdogan and Balci, 2016; Coskun et al., 2015) also shape our
perception of time and perception accuracy. Even though the mechanisms of time-keeping are reasonably well understood,
little is known about how aware people are of their potential biases and whether this knowledge affects their behavior
when facing time-related incentives.

This question is related to our ability of being aware that we know something, a concept referred to as metacognition
(Koriat, 2007; Nelson, 1996). Metacognition has been applied to subjective time only recently (Akdogan and Balci, 2017;
Lamotte et al., 2012; Sackett et al., 2010) to show that individuals hold beliefs about distortions in their experience of time
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that affect their time-related judgments. However, it is unclear how such beliefs impact decision making. For instance, if a
person is typically late, is she bound to fail to meet important deadlines? Or is she conscious enough of her tendency to be
able to correct it when the incentives are sufficiently high?

The objective of this study is to embed a classical time production paradigm into a decision-making paradigm, where
participants are not given explicit time targets but, instead, choose their time targets as a response to varying incentives. With
this approach, we can investigate the ability of individuals to internalize their perceived biases in their decision of when to
act. This study complements the growing literature that links timing to decision-making. However, instead of investigating
timing as a decision-making process itself as in traditional accumulator timing models (Gibbon, 1977; Treisman, 1963) or
in studies looking into the processing dynamics underlying temporal decisions (Balci and Simen, 2014), we investigate the
decisions that result from timing. Said differently, we model timing properties as an input for decision-making rather than
an output of decision-making.'

Our study faced four main challenges. First, to isolate biases in time-keeping behavior, it was crucial to choose a task
that relied as little as possible on orthogonal concerns. To prevent interference with memory processes, we avoided retro-
spective paradigms (Block and Zakay, 1997; Fraisse, 1984) and we opted for a prospective paradigm in which participants
were informed beforehand that they had to make a time related judgment. We also favored time production (the length of
the interval to produce is disclosed) to time reproduction (participants have to reproduce an interval of time of unknown
length). Even though time production tasks require some form of memory regarding the length of the intervals involved
in the experiment, they do not tax working memory to process and store information on the time interval to reproduce as
time reproduction tasks do (Baudouin et al., 2006). We finally designed a novel task that discouraged chronometric counting
(Grondin and Killeen, 2009; Hinton and Rao, 2004; Wearden, 2003) to better capture intrinsic timing properties.

Second, to be able to focus on how participants adjust their time targets to respond to incentives, it was critical to
design a task in which we varied the structure of the rewards and paid participants as a function of their performance.
This design departs from traditional experiments on subjective time. Indeed, with a few exceptions (Akdogan and Balci,
2016; Wearden and Grindrod, 2003) participants are usually asked to produce accurate reports and are compensated with a
fixed payment for their effort. Incentivized payments are, however, crucial in decision-making studies because the objective
is to trigger cognitive processes that govern real-life choices. Concretely, we included three tasks, each featuring specific
time-related incentives. In our baseline task, participants completed a time production task in the range of 31-41 s, and
they were rewarded for accuracy. Formally, they earned maximal payoff ($20) when they correctly estimated the announced
time and their payoffs was reduced symmetrically as their estimates were farther away from the announced time in either
direction. We then asked participants to complete two time production tasks in which the reward structure was altered. In
one of them, the announced time was a hard deadline: earnings increased as the estimate came close to the announced
time and vanished afterwards. This reward scheme incentivized participants to avoid exceeding the deadline and to report
lower estimates compared to the baseline task. In the other one, the announced time was a release time: earnings were
nil for estimates below the release time, maximal at the release time and decreased afterwards. This scheme incentivized
participants to wait past the announced time and to report higher estimates compared to the baseline.

Third, to assess whether participants were aware of their intrinsic timing attitudes, we needed to elicit their beliefs. There
is a variety of belief elicitation methods. Recent studies show that eliciting beliefs with properly incentivized methods are
often meaningful and consistent with observed behavior in the laboratory (Palfrey and Wang, 2009; Schotter and Trevino,
2014). Furthermore, the experimenter should minimize the chances that the procedure itself affected the behavior under
study. In particular, we were not interested in feedback effects, which are known to affect timing behavior (Brown et al.,
1995; Droit-Volet and Izaute, 2005; Franssen and Vandierendonck, 2002). For these reasons, we opted for an incentivized
method and a procedure that did not interfere with the main tasks. At the end of the experiment, we asked our participants
to make a self-assessment regarding their performance in the baseline task and we rewarded them for accuracy.

Fourth, to be able to assess biases in time perception and to understand their effects on decision-making, we had to
develop a normative theoretical framework that generated predictions which could then be compared to the empirical find-
ings. In the tradition of neoclassical economics, we opted for a rational framework in which decision-makers maximize their
expected payoffs but are subject to noisy time perception. More precisely, we modeled individuals as in traditional theo-
ries of subjective time (Gibbon et al., 1984) and we assumed that, when they target a given time interval, they produce
time intervals on average equal to the target (“mean accuracy”). We derived the optimal behavior of such decision-maker in
the context of our time-related incentives. We contrasted the predictions of the model with the actual behavior of partic-
ipants and we determined whether deviations from the target intervals were due to biases in time perception or biases in
decision-making.

Given the growing interest in the role of emotions on time perception (Droit-Volet and Meck, 2007; Droit-Volet and
Wearden, 2002; Fayolle et al., 2015) and decision-making (Damasio, 1994; Phelps et al., 2014; Schwartz, 2000), we were
also interested in the effect of emotions on the interaction between the two. Emotion, however, is a complex and rich
concept and we opted for an exploration of the effect of physiological stress on time-related incentives. To this purpose,
half of our population completed the Cold Pressor Task (CPT), a method that increases the participants’ cortisol levels and

1 There is also a small theoretical and experimental literature in economics that links time perception to time preferences (Brocas et al., 2016; Capra and
Park, 2016; Ebert and Prelec, 2007; Ray and Bossaerts, 2011).
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has been previously shown to affect decision-making (Lighthall et al., 2012; Porcelli and Delgado, 2009). In particular, in
the context of psychological stress, increases in cortisol levels correlate with increases in dopamine release (Pruessner et al.,
2004), which are known to make time perceived as passing more slowly (Meck, 1996). This evidence suggests a possible
mechanism linking stress to changes in time perception (through variations in dopamine concentration).? We therefore
hypothesized that participants who completed the Cold Pressor Task would act as if time passed more slowly.

To answer our research questions, we followed a simple research strategy. We derived hypotheses for a rational decision-
maker who maximizes rewards, and fitted predictions to the data. We used time reports in the baseline task to assess the
presence of a time perception bias, for each individual and in the overall population. By comparing the responses between
the baseline and each of the two other tasks, we assessed whether participants responded to incentives conditional on their
biases. That is, we determined whether biases in behavior in those two tasks were due to biases in time perception or
biases in decision-making. Moreover, by comparing behavior between participants who did and did not complete the CPT,
we studied the effect of physiological stress on time perception and decision-making. Finally, we used elicited beliefs to
evaluate self-awareness and to further ascertain if behavior was contingent on beliefs.

2. Experimental design and procedures

We conducted two treatments of a single experiment in the Los Angeles Behavioral Economics Laboratory (LABEL) at the
University of Southern California, with a large number of subjects (170 individuals, 79 Male and 91 Female, in 21 sessions
of 6-10 participants each). Among those, 83 individuals (36 Male and 47 Female) participated in the “Stress” treatment and
underwent the Socially Evaluated Cold Pressure Task (CPT). Subjects completed a survey before entering the laboratory to
ensure all criteria for cortisol sampling were satisfied. The remaining 87 individuals participated in the “Control” (non-CPT)
treatment. Sessions lasted for about 90 min and all started at 3pm to control for the circadian variability in cortisol levels.
Instructions were read out loud at the beginning of each task. All methods were carried out in accordance with existing
guidelines and the protocol was reviewed and approved by the Institutional Review Board of the University of Southern
California (UP-14-00663). We obtained informed consent from each participant.

2.1. Socially evaluated cold pressure task

We induced stress by submerging the participant’s non-dominant hand in a bucket of ice water for 3 min. The procedure
was coupled with a social pressure aspect. The level of physiological stress was assessed by collecting three saliva sam-
ples per participant (Base, Peak and End of experiment) in order to measure changes in cortisol levels. The details of the
procedure are explained in Appendix A.1.

2.2. Time perception tasks
The design was adapted from Brocas et al. (2016).

2.2.1. Prospective time estimate

Participants completed three time perception tasks that differ exclusively on the payoff incentives. In each task, partici-
pants were asked to report 10 time intervals t of similar but not identical length, without knowing in advance the number
or length of intervals to report. This is called a prospective time estimate in a production paradigm. Prospective refers to a
case where participants know in advance that they will be requested to estimate the elapsed time. Production occurs when
participants are informed about the length of the interval they must produce (Nichelli, 1996). The intervals were of 31, 32,
33, 34, 35, 36, 37, 38, 39 and 41 s, respectively. We designed a Matlab-based program to implement the elicitation of the
participants’ time perception. It presented the instructions on the screen and guided them to estimate time intervals. Partic-
ipants were prompted the length of the interval t to be estimated. Then, participants marked the beginning and end of the
interval by clicking on a button on the top right corner of the screen. The order for the 10 intervals was randomly selected
but it was the same for all participants. At the beginning of the session, an experimenter explicitly asked participants to put
away any time-keeping devices (watches, music players, cell phones, etc.) and made sure they complied. We used computer
mice that produced no sound when clicked to ensure that participants could not use auditory cues to infer the behavior of
others.

2.2.2. Interfering tasks

To ensure that participants did not count time, we asked them to solve a concurrent interfering task (the “table task”)
while estimating the time intervals.? In the table task, participants were sequentially presented a series of 4 x 6 tables where
each row and column had a name, and they were instructed to click on a specific cell. For example, in one table participants

2 Other mechanisms may be at play (Dickerson and Kemeny, 2004), but the dopamine mechanism provides a clear testable prediction in terms of the
direction of the effect.

3 In the debriefing of the pilot sessions preceding the experiment we asked participants whether they could count time while performing the table task,
and almost everyone answered negatively.
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Fig. 1. Payments. Given an announced time interval t, participants were paid according to the payoff function illustrated with the dotted line. Payment
was maximized when the report was r = t. Payments were positive for reports re[0.6t, 1.4t] in task B (left), r[0.6¢, t] in task U (center), and re[t, 1.4t]
in task O (right).

were asked: “Please click the cell where the column to the right of the column labeled athena intersects the row above the
biology row.” The names of the rows and columns as well as the phrasing of which cell to click on changed from table
to table, to make sure participants would pay attention to the table task and therefore could not count at the same time.
There was a random and unspecified time limit to complete each task (between 10 and 15 s) and failure to complete
it counted as an incorrect answer. Overall, we designed the interfering task in a way that it required sufficient effort to
prevent participants from counting but was easy enough to make sure all participants could successfully complete it if they
put attention.* In Appendix A.2 we provide a screenshot of one such table. Finally, we informed participants beforehand
that performance in a task would not count as correct or incorrect whenever they reported the end of an interval during
that task. This was meant to prevent the completion of a table task from interfering with time estimation.

2.3. Earnings

In the time perception tasks, the amount earned was a function of (1) the distance between the announced and reported
intervals, and (2) the proportion of correct answers in the interfering task. More precisely, for each participant, one time
interval of each task was randomly selected for payment. For that time interval, the participant earned money only if at
least 75% of the interfering tasks were correctly answered.”

As noted above, the three time-perception tasks differed in the payoff incentives. In the “baseline” task, hereafter B, par-
ticipants earned $20 if the report coincided exactly with the announced interval t. Participants lost $0.5 for each 1% that
their report was above or below the announced interval. In the “under-report” task, hereafter U, participants lost $0.5 for
each 1% that their report was below the announced interval and they lost everything if the report was above the announced
interval. Last, in the “over-report” task, hereafter O, participants lost $0.5 for each 1% that their report was above the an-
nounced interval and they lost everything if the report was below the announced interval. The three tasks are summarized
in Fig. 1. Task B was always performed first. The order of tasks U and O was randomized across sessions. The entire pro-
cedure was explained beforehand. While participants could potentially obtain as much as $60, earnings based on the three
tasks averaged $16.9.

2.4. Beliefs

Participants were asked to assess their performance in task B by estimating how many of the 10 reported intervals were
below the announced intervals and how many were above: 0-2 below and 8-10 above, 3-7 below and 3-7 above, or 8-10
below and 0-2 above. This question was incentivized with $1 payment for a correct answer. It was asked at the end of
the experiment to prevent any form of feedback from interfering with the choices in the estimation task (e.g., by reassess-
ing own performance). For analysis, participants who responded ‘0-2 below and 8-10 above’ (respectively ‘3-7 below and
3-7 above’, respectively ‘8-10 below and 0-2 above’) were categorized as perceiving themselves as “Over-estimators” (re-
spectively “Unbiased”, respectively “Under-estimators”). We used the same categories to classify them based on their actual
reports. Accuracy of beliefs was obtained by comparing the perceived category with the actual category of each participant.

2.5. Timeline and saliva sample collection

The precise timeline of the experiment was the following. First, subjects submitted the “Base” saliva sample. Next we
read the instructions for task B and performed a few practice rounds of time estimation intervals. Subjects in the non-
CPT treatment started task B immediately after. Subjects in the CPT treatment performed the Cold Pressure Task and then

4 The task typically used in the interval timing literature consists in asking participants to repeat aloud digits presented on a computer screen
(Wearden et al., 1997). Given we organized sessions with several participants, it was not possible to use such method. We also preferred a distractor
task that could be easily incentivized.

5 In 83% of the intervals (compared to 84% in Brocas et al. (2016)), participants answered correctly at least 75% of the interfering tasks and therefore
were eligible for payment.



I. Brocas et al./Journal of Economic Behavior and Organization 148 (2018) 1-19 5

proceeded to task B. Exactly 20 min after the beginning of task B (so, for CPT subjects, 20 min after the end of the CPT
procedure), we stopped the experiment and collected the “Peak” saliva sample. We did not need to interrupt any decision-
making as in all sessions the timing coincided with the experimenter reading the instructions for the second task (either U
or O depending on the session). Subjects completed the second and third tasks, after which they provided the “End” saliva
sample. Finally, they completed a brief questionnaire (see below) which included the belief elicitation of their performance
in task B. They were paid in private before leaving the experiment. The time between the “Peak” and “End” saliva samples
was between 30 and 40 min depending on the sessions. A sample copy of the instructions and questionnaire is provided
in online supplementary data S1, S2 and S3. Notice that, given our timing, maximal cortisol levels for CPT subjects occurs
between the end of the first task and the beginning of the second. By the end of the third task, cortisol is expected to be
back (or close) to baseline levels.

2.6. Questionnaire

We conducted a questionnaire also at the end of the session to collect demographic information such as gender and
primary language spoken. These control questions are often added by default in experiments in Economics. Participants
were also asked to report their usual stress level and their stress level on the day of the experiment. We used a scale from
1 (no stress) to 10 (highest stress). The belief elicitation of performance in task B was also part of the questionnaire.

3. Theory and predictions

We start with a theoretical exercise to assess how participants who believe that their subjective perception may be noisy
and biased should behave. This exercise allows us to make testable predictions and to identify in our data whether behavior
is driven by the existence of a bias that is not corrected, by mistakes in decision-making or by both.

3.1. Model

3.1.1. Background ' 4
Consider participant i who targets time interval T and suppose that his perception p' of 7 is biased by an amount b'. For
simplicity, let us assume it takes the following additive linear form®:

p(t)=t+b (1)

To formalize the idea that a participant does not know his true bias and is therefore unable to correct for it, we model b’ as
a random variable with p.d.f. g(b') and c.d.f. G(b'). Participant i knows only that his own bias is drawn from the distribution
of the bias in the population. Additionally, when participant i wants to report his perception of an interval 7, he does so
noisily. Formally’:

r=p(t)+& & r=t4+b+e" where & iid. N(0,n?) (2)

Overall, the difference between the report r and the interval T that the participant targets is due both to the perception
bias b' and the individual noise &'.

3.1.2. Assumptions

A desirable property of subjective time is mean accuracy, or the idea that reported time in the population is, on average,
unbiased with respect to the target (E[r!] = T). We capture this property in our model by assuming no expected bias in
the population: E[b] = 0. This assumption corresponds to the standard “mean accuracy” requirement in the classical scalar
expectancy theory. This is also a natural assumption in the context of a rational model, since if there was a known bias
at the population level, participants would simply correct for it. In other words, any rational theory must presume the
existence of no aggregate bias in the population.

Reported time is also usually modeled as being drawn from a normal distribution. We impose weaker assumptions,
namely (i) a symmetric distribution of bias, g(b') = g(=b'), which implies that reports err symmetrically around the target
(Pr[ri = T +z] = Pr[r = T — z])) and (ii) log-concavity of the distribution of the random variable a' = b’ + &!.8

6 We adopt an additive bias for technical simplicity. In our design, the specific functional form of p(t) (additive, multiplicative, logarithmic, regression
towards the mean, etc.) is not crucial since the variation in the announced intervals is small, namely between 31 s and 41 s. In the limit where there is
no variation, all one-parameter functional forms are identical. After consideration, we decided against multiple measures of the same interval to avoid an
excessively boring task for participants. For an estimation of a more general time perception function (two-parameter power function) over a wider set of
intervals (24 -196 s) we refer to Brocas et al. (2016).

7 It is important to introduce both a noise and a bias. Indeed, in the absence of noise our model would not allow any variance in bias within individuals
(which is not what we empirically observe) and in the absence of bias our model would force the report of every individual to be unbiased (which, again,
is not what we empirically observe).

8 Formally, let fla') be the p.d.f. of the random variable a' = b’ + &'. Log concavity requires (Cf/((a“)’)/ < 0. It is a technical condition satisfied by many
common distributions, including but not limited to the normal distribution.
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3.1.3. Optimal target

When an interval t is announced in task ke {B, U, O}, participant i chooses a target Gli(t). Given the structure of payoffs,
one could think that a risk-neutral participant who maximizes expected payoffs should always target the interval t that
results in maximal payoff. However, the participant is aware that his perception may be biased (1) and that his estimation
is noisy (2). These affect his incentives to target a certain interval. In Appendix A.3, we show that the optimal target Gli* (t)
in task k is:

OF)=t; OiF@t) <t; OF(t) >t with O (t) — 0 (t) =05 (t) — 0 (t) (3)

The intuition is as follows. When payoffs are symmetric around ¢ (Fig. 1, left), a payoff-maximizing participant who
believes to be unbiased on average should target t, to minimize the expected (upward or downward) deviation. This is
not true anymore when payoffs are asymmetric. In task U, participants have incentives to decrease their target because
over-reporting (r' > t) is significantly more costly than under-reporting (rf <t). A lower target ensures that the final report
remains within the range of positive rewards, that is, below t (Fig. 1, center). Using an analogous argument, participants
have incentives to increase their target in task O (Fig. 1, right). By the symmetry of the problem, the incentives to decrease
the target in U and to increase the target in O are identical. This implies that targets in U and O are symmetric with respect
to the announced time t.° Overall, the final report in task k and given the optimal target is:

() =0k (t) +b + ek () =0@) +b el () =05@t) + b+l (4)

3.1.4. Shading
We call shading the amount by which reports, are decreased in task U and increased in task O with respect to task B. For
future reference, the shadings of participant i in interval t of tasks U and O are denoted by hy;(t) and hy(t), respectively:

hi(t) =i (t) — iy (¢6) and  hh(t) = rh(t) — ri(t)

Using (4) it is immediate that hi(t) ~ N(0] — 0}.2n?) and hi;(t) ~ N(6} — ;. 2n?). This means that while the report in each
task depends on the bias of the participant, shading across tasks does not. This is based on the assumption that while the
bias is unknown, it is constant across tasks. ‘ ‘

Also, if the participant acts optimally, expected shadings hjj and h{} must satisfy:

B=Qk -0l and hi =0 -0}
3.2. Predictions

The theory offers a number of testable predictions. In each task and in each trial, we observe the announced time interval
t as well as the report r}'{(t) made by each participant. We will use that information to estimate the individual biases b’ and
the individual shadings hi (t) and hi (t). Let I,(r}) be the empirical c.d.f. of reports in task k. Also, let Hy (hi;) and Ho(h)
be the empirical c.d.f. of shading in U and 0. We will test three main predictions of the model.

Prediction 1. There is no bias in the population in task B: E[bi] = 0.

Prediction 2. Participants shade downwards in task U and upwards in task O. Formally, the distributions of reports across
tasks satisfy first-order stochastic dominance: Io(r) <Ig(r) <Iy(r) for all r.

Prediction 3. Participants shade the same amount (though in opposite directions) in U and O. Formally, the distribution of
shading between B and U is the same as between O and B: Hy(h) = Hp(h) for all h.

Notice that these predictions hold generically, that is, without having to specify a functional form for the distribution of
biases in the population, G(b').

Last, the theoretical model is not designed to predict how stress should affect behavior in our tasks. In particular, stress
may interact not only with the perception of time but also with the ability to act rationally, which is a key element in
the derivation of the results above. However, based on the evidence reviewed in the introduction regarding the relationship
between stress, dopamine release and time perception, we make the following prediction.

Prediction 4. Participants who completed the CPT report stochastically higher time estimates in task B than those who did
not.

3.3. Calibration

We can also obtain point predictions of the unobservable (optimal) targets in tasks U and O if we assume that the bias
in the population is normally distributed, b' ~ N(0, 62), where 62 is the empirical variance of the bias of our participants
in task B. By computing these optimal targets, we can further test the theory and determine whether the expected reports
are in line with the targets. Details of the method are provided in Appendix A.4.

9 Trivially, as the variance of the bias and noise go to zero (e.g., because we allow time keeping devices), we get 6} (t) — t~ and 6} (t) — t*. Also, if the
participant is risk-averse the incentives to target an interval below t in task U and above t in task O are increased, as it reduces the likelihood to obtain no
payoff. However, the incentives to target ¢t in task B remain unchanged since the cost of over- and under-reporting are still symmetric.
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4. Results

The objective of the empirical analysis was to test Predictions 1-4. We do not report the analysis of each time interval
separately in the main text as it is not central to our study. However, the analysis of each interval is briefly addressed in
Appendix A.5. We also use a p-value of 0.05 as the benchmark threshold for statistical significance.

4.1. Stress

Fig. 2 shows the evolution of cortisol levels throughout the experimental sessions in both treatments. Each dot represents
the average level of salivary cortisol samples (ng/mL) taken at Base, Peak (20 min after the CPT procedure), and End of the
experiment (on average, 55 min after the CPT procedure). The CPT and non-CPT groups start with statistically indifferent
levels of average cortisol (3.07 vs. 3.17; two-sided Welch t-test, p-value = 0.724). The CPT group experiences a large and
statistically significant increase in average cortisol at Peak (5.58 vs. 3.07, p-value <0.001). In comparison, the non-CPT group
experiences no statistical change in average cortisol at Peak (3.20vs. 3.17; p-value = 0.918). We also observe higher cortisol
levels in the CPT group than in the non-CPT in the End sample (3.53 vs. 2.57, p-value <0.001), suggesting that by the end of
the experiment cortisol levels are not fully back to baseline. Overall, the data provides strong evidence that our procedure
was successful in raising the cortisol level of the subjects under CPT.

4.2. Model estimation

4.2.1. Task B: bias in report

For each participant, we estimated the bias in task B across all 10 intervals. The best estimate of the bias of each in-
dividual is simply the empirical mean of the difference between the observed report and the announced time. When we
averaged the individual biases to obtain the population bias, we got E[b'] = 6.86, which is significantly different from 0 (one
sample, t-test, t = 7.34, df = 169, p-value <0.001). The median bias was 6.05 and the distribution’s skewness was 0.48.
Out of our 170 participants (and using a 5% significance level), 88 had a positive and significant bias, 22 had a negative and
significant bias and 58 had no significant bias in either direction.

Overall, and consistent with the existing literature in production of similar time intervals (Matell and Meck (2000);
Wittmann et al. (2007)), we found substantial heterogeneity in the bias of our participants, a symmetric distribution of the
bias around the mean of the distribution, and a tendency to overestimate time.'” This result indicated that behavior was
not consistent with Prediction 1. Said differently, mean accuracy is not supported by our data.!" Finally, biases were not
significantly different between CPT and non-CPT participants (t-test for comparison of means (6.47 vs. 7.27, p-value = 0.67)

10 Note however that such studies pay subjects a fixed fee and therefore lack the proper monetary incentives to be accurate.
11 Appendix A5 reports similar findings interval by interval.
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Fig. 3. Distributions of reports (left) and shading (right). Participants’ reports were significantly smaller in U and significantly higher in O compared to B
(Io(r) < Ig(r) < Iy(r)). Shading was similar in U and O (Hy(h) =~ Ho(h)).

Table 1
Shading across treatments.

all U-0 0-U

non-CPT CPT non-CPT CPT non-CPT CPT

E[h,] 415 511 482 430 332 5.80
(0.99) (105)  (1.31) (0.86)  (1.52) (1.80)

E[h)] 620 690 530 859  8.87 417
(123) (117)  (1.79) (207)  (1.36) (1.40)

(Standard errors in parenthesis).

or Kolmogorov-Smirnov test for comparison of distributions (p-value = 0.65)). Thus, Prediction 4 was not supported by the
data.'?

4.2.2. Tasks U and O: shading

The data also revealed that the incentives to report intervals in tasks U and O were well-understood. Consistent with
Prediction 2, participants provided lower reports in U than in B (rb < rg), and higher reports in O than in B (rf) > rg). This
result can best be noted with the cumulative distribution functions of the average report of each individual. As depicted
in Fig. 3 (left), the distribution of individual average report in O first-order stochastically dominated the distribution in B,
which itself first-order stochastically dominated the distribution in U (Ip(rf) < Iz(r') < Iy(r'), Wilcoxon rank sum test, p-value
<0.001 for all pairwise comparisons).

Also consistent with Prediction 3, the amount of downward shading in U ( b = rg - rb) was positive and similar in mag-
nitude to the amount of upward shading in O (hi) =i —r}), that is, hi, ~ hi. Both shadings were significantly above 0
on average (E[h{] =4.62, t-test, t =6.43, df =169, p-value <0.001 and E[h}] = 6.55, t-test, t =7.74, df =169, p-value
<0.001) and not significantly different from each other (t-test, t = 1.34, df = 169, p-value = 0.181). Again, the result can be
seen most clearly with the cumulative distribution functions. As depicted in Fig. 3 (right), the distributions of upward and
downward shading revealed only marginally more shading in O than in U (Hy (h) = Hg(h), Wilcoxon rank sum test, p-value
=0.070).

Finally, we compared the average shading in U and O in the control (non-CPT) and treatment (CPT) conditions, pooling
all observations (all) as well as separating them by the order in which tasks were performed (task U before task O or U-O
and task O before task U or 0-U). The results are compiled in Table 1.13

12 The only noticeable treatment effect was that the variance of the distribution of biases was significantly higher under CPT (F-test, F(82,86) = 1.84,
p-value = 0.005). However, this was exclusively due to the fact that 7 CPT participants had extreme biases, outside the range of the non-CPT participants
(F-test, F(75,86) = 1.01, p-value = 0.97 after removing these participants).

13 Since cortisol levels peak before the second task (see Section 2.5), it is possible that the CPT procedure had an effect in the second but not the third
task. Similarly, fatigue may have also had an effect on choices.
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Differences in shading between CPT and non-CPT subjects are statistically significant in only 1 out of 6 cases, namely for
upward shading when task O is performed before U (8.87 vs. 4.17, p-value = 0.02). In that case, the difference is opposite to
the one expected, with stressed subjects shading less than non-stressed ones. Among CPT subjects, differences in shading
are not significantly different depending on the order in which tasks U and O were performed. Overall and just like for task
B, we found no strong evidence that stress affected behavior in the time perception tasks.

4.2.3. Individual heterogeneity

Although shading followed the basic theoretical predictions at the aggregate level (downwards in U and upwards in 0),
there was substantial heterogeneity across individuals. Indeed, only 96 participants shaded in the correct direction in both
tasks. Among the rest, 37 shaded downwards in both cases, 36 shaded upwards in both cases and 1 shaded upwards in
U and downwards in 0. When comparing the bias in task B of these participants, we found that participants who shaded
consistently with theory had a bias of 6.3 on average. Those who systematically decreased their report had a significantly
higher bias (13.2 on average, t-test, t = —2.43, df =49.1, p-value = 0.02) while those who systematically increased their
report had a significantly lower bias (1.9 on average, t-test, t = 2.29, df = 68.8, p-value = 0.02). This finding is suggestive of
a link at the individual level between behavior in task B and correction in the subsequent tasks.

We were also interested in analyzing the relationship between the amount shading in U and shading in O of each indi-
vidual. If shading was entirely driven by a self-assessment of the individual noise &; (see Eq. (2)), the correlation would be
positive and close to 1: subjects with a noisier estimation would depart more from the target in both directions to avoid ob-
taining no payoff. Instead we found a strong, negative and statistically significant correlation (PCC (hi ,hg) = —0.67, p-value
<0.001). This result is a first indication of an important finding that will be further studied in Sections 4.4 and 5: individ-
uals have a certain belief about their bias in task B, and try to correct it by under-shading in one task and over-shading in
the other task.

We also noticed that participants with a smaller absolute bias were also less volatile (PCC (|bf|, ’7}}) = 0.43, p-value
<0.001) suggesting that, at the individual level, the ability to produce accurate intervals on average went hand in hand
with the ability to not deviate too much from them. The relationship between bias and volatility was not modeled by our
theory. It was however consistent with previous research (Brocas et al., 2016).

4.2.4. Calibration

Using the calibration proposed in Section 3.3, we could obtain point estimates of optimal targets (see Appendix A.4 for
the formal derivation). Given the estimates of the variance of the sample (62) and the individual noise (ﬁl?), we found that,
on average, participants should target 65 = 30.88 and 6} = 40.32. The empirical average reports were significantly higher
than these optimal targets: 37.84 in U and 49.02 in O. However, they were remarkably consistent if we account for the
sample’s positive bias. Indeed, given the bias estimated in task B, participants would be expected to report on average
0y +E [b'] = 37.74 in U and 05+ E[b'] = 47.18 in O. The first one was not significantly different from the empirical average
report (t-test, t = 0.12, df = 169, p-value = 0.906) and the second one was marginally different (t-test, t = 1.94, df = 169,
p-value = 0.055). This calibration exercise confirmed that, on average, participants were acting (close to) optimally in tasks
U and O given the bias estimated in task B.

4.2.5. Earnings

Participants earned on average $8.4 in B, $4.7 in U and $3.9 in O (Fig. 4). The distributions of earnings showed signif-
icantly lower payoffs in O than in U (Wilcoxon signed rank test, p-value = 0.028). The main reason was that the standard
deviation in reports in task O was higher than in task U, resulting in an increased likelihood of falling outside the posi-
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Table 2
OLS regressions of reports and shading.

(1) (2) (3) (4)
e -t -t -t rie-t

Constant 6.99** 7.69%** 7.43%%* 8.28***
(1.52) (1.29) (1.35) (1.67)
Task O - 6.57** 6.90** 6.57+*
(0.85) (117) (0.85)
Task U - —4.627% 417 —4.62%
(0.72) (0.99) (0.72)
CcPT 0.69 0.08 0.61 -1.50
(1.89) (1.57) (1.87) (2.45)
Male —-1.06 -1.93 -1.93 -1.91
(1.86) (1.56) (1.56) (1.56)
CPT*Task O - - —0.68 -
(1.70)
CPT*Task U - - -0.91 -
(1.44)
U-0 - - - -1.09
(1.96)
CPT*U-0 - - - 3.25
(3.09)
Observations 1697 5092 5092 5092
Adj. R? 0.001 0.152 0.152 0.156

Standard errors in parenthesis. * p < 0.05; **p < 0.01; ***p <0.001

tive reward zone (6o = 12.34 and 6y = 10.57, F-test for comparison of variance, F(169,169) = 0.733, p-value = 0.044; Fig. 4,
center and right).!

4.2.6. Questionnaire
We did not find any effect of gender, language or reported stress levels.

4.2.7. Summary

Contrary to Prediction 1, reported intervals were excessively high, resulting in a positive expected bias in the population.
Contrary to Prediction 4, reports were not significantly different between stressed and non-stressed subjects. By contrast, in
support of Predictions 2 and 3, marginal changes in reports across tasks closely followed the predictions of theory at the
aggregate level.

4.3. Regression analysis

An alternative (but formally identical) method to estimate the population bias is to run a simple OLS regression of the
difference between individual i’s report and interval in task B, rg(t) —t, on a constant. An advantage of this method is
that we can include control variables to test for differential effects of treatment variables and demographic characteristics
(naturally, once we include the control variables, it is not a structural estimation of the model so the coefficients cannot be
interpreted as bias or shading). Table 2 (column 1) presents the result of this regression, with dummy variables for gender
(Male = 1) and stress (CPT = 1), and with robust errors clustered at the individual level.

The results in (1) confirmed our previous findings: the bias in task B was positive and highly significant (the difference
between the estimated constant in the regression and the coefficient of E[b’] in the previous section was just due to the
control variables). Also, biases were not significantly different between CPT and non-CPT participants nor between males
and females.

Next, we ran the same regression of the difference between report and interval, except that we included all three tasks
(ke{B, U, 0}) and added dummy variables for task O (task O) and task U (task U). The outcome is reported in Table 2 (column
2). Reinforcing the previous results, we found a similar coefficient for the constant. We also found a positive and highly
significant coefficient for Task O, which captured the amount of upward shading in task O relative to task B, and a negative
and highly significant coefficient for Task U, which captured the amount of downward shading in task U relative to task B.
Again those coefficients were similar in magnitude to the shading in the previous section.

Finally, we added some extra terms to the regression in column 2. We first included interaction terms between stress
and task (CPT*Task O and CPT*Task U, Table 2 column 3), to determine whether stress had a differential effect across tasks.
Then, we added a dummy variable that took value 1 if task U was performed before O (U-O, Table 2 column 4) to determine

4 Naturally, earnings were highest in task B, but these are not comparable since the interval with positive rewards was twice as large in B as in U or O
(Fig. 4). Standard deviations between B and the other tasks are not comparable either, since task B is always performed first.
15 For simplicity of exposition, we do not include the other answers to our questionnaire. They do not affect any of the results provided in this section.
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Fig. 5. Distributions of biases in B (left) and distributions of shading in U (center) and O (right) as a function of self-perceived beliefs. Biases in B are
statistically different across beliefs and consistent with them: Under-estimators are less biased than Unbiased who are less biased than Over-estimators. In

U and O, participants shade as a function of their belief.

whether shading depended on the order in which tasks O and U were performed (due, for example, to fatigue). We also
included an interaction term between stress and order of tasks (CPT*U-O) since cortisol peaked during the second task and
was close to baseline in the third. Consistent with the average findings in Table 1, none of these variables had a significant
impact on reports, suggesting that cortisol increases did not significantly affect choices in our time perception tasks. Choices

were not significantly different across genders.

4.4. Bias awareness and correction

Given the observed heterogeneity and negative correlation in shading across individuals, we studied the relationship
between behavior and self-assessed biases. Under full rationality, every participant should take his possible bias into account,
de-bias it and end up producing accurate reports, at least on average. Our analysis indicated that this was not the case, as
we observed significant over-reporting in the population. For the same reason, all individuals should believe that they are
equally likely to under-report than over-report, so perceive themselves as “Unbiased”.

The question is: assuming that participants were not sophisticated enough to de-bias their behavior, were their beliefs
consistent with their behavior (“I think I over-estimated and, indeed, I did over-estimate”)? Also, did they act according to
those beliefs in tasks U and O (“I think I over-estimated and therefore I adjusted my shading accordingly in U and 0”)?

We found that 45 participants (26%) perceived themselves as “Under-estimators,” 78 participants (46%) perceived them-
selves as “Unbiased,” and 47 participants (28%) perceived themselves as “Over-estimators.” Although, as we already know,
the majority of participants reported excessively high time intervals, they had on average correct beliefs about their bi-
ases in B relative to the population: the distribution of biases among Over-estimators first-order stochastically dominated
the distribution of Unbiased and Under-estimators (Wilcoxon rank sum test to compare Over-estimators with Unbiased and
Under-estimators respectively, p-value = 0.021 and 0.016). Under-estimators had lower biases compared to Unbiased partic-

ipants, although differences in the distributions were not statistically significant (Fig. 5, left).

Participants also acted correctly upon their beliefs in tasks U and O. In task U, Under-estimators shaded downwards less
than Unbiased and Unbiased shaded downwards less than Over-estimators (Fig. 5, center). Symmetrically, in task O Under-
estimators shaded upwards more than Unbiased and Unbiased shaded upwards more than Over-estimators (Fig. 5, right).!®
These differences were statistically significant, except for the difference between Unbiased and Under-estimators (Wilcoxon
rank sum test to compare Under-estimators with Unbiased in U and O respectively, p-value= 0.52 and 0.16; Unbiased with
Over-estimators in U and O respectively, p-value= 0.002 and 0.01; Under-estimators with Over-estimators in U and O re-
spectively, p-value= 0.004 and 0.002)."”

Overall, even though shading in U and O were of equal magnitude on aggregate, once we conditioned on the self-assessed
bias of the participants they were not. Consistent with their beliefs, Over-estimators shaded significantly more in U than in

O (Wilcoxon signed rank test, p-value = 0.042) and Under-estimators shaded significantly more in O than in U (Wilcoxon

signed rank test, p-value = 0.005). However, we also found that unbiased participants shaded more in O than in U (Wilcoxon

signed rank test, p-value= 0.014).

16 As a referee pointed out, some risk-averse individuals could report to be Under-estimators or Over-estimators against their own beliefs for hedging
motives. However, if subjects reported untruthfully as a mechanism for hedging, we should not observe a correlation between the belief reported and their
actual behavior in task B. We should not observe a correlation either between the belief reported in task B and the amount of shading in U and O.

7 In most cases, all the differences were significant or close to significant after running a boxplot analysis and removing extreme outliers.
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Table 3
OLS regressions of reports and shading on self-assessed beliefs.
(1 2) 3) @ G
rp(t) —t ro(t) —t () —t rp(t) —rg(t) rp(t) — 1y (0)
Constant 4.62* 16.08*** 3.09 11.43%+ 1.50
(2.05) (2.15) (1.66) (2.30) (1.65)
Unbiased 1.08 -215 0.44 -3.20 0.63
(2.12) (2.30) (1.82) (2.15) (1.49)
Over-estimators 7.07** -1.77 0.68 —8.91*+* 6.40**
(2.65) (2.62) (2.16) (2.60) (2.02)
ceT 0.54 -0.12 —-0.34 —-0.67 0.95
(1.82) (1.87) (1.58) (1.63) (1.39)
Male -1.05 —247 -2.36 -138 131
(1.79) (1.85) (1.58) (1.63) (1.40)
Observations 1697 1698 1697 1697 1697
Adj. R? 0.086 0.054 0.072 0.053 0.049

Standard errors in parenthesis. * p < .05; ** p < .01; ** p < .001

The corrective behavior implied that while average reports were significantly different in task B between Over-estimators
and the other two groups (t-test, p-value = 0.009 and 0.012), they were not different between any two groups in tasks U or
O (t-test, all p-values >0.4).

To sum up, our results indicated that participants had correct beliefs about their time perception bias relative to others
in the population. Even though they were not able to anticipate their bias in task B, they correctly acted upon it in tasks
U and O. There was again no effect of the CPT procedure on the distribution of self-assessed biases or on the behavior of
participants within groups.

To further analyze the relationship between reports and beliefs, we ran similar regressions as in Table 2, where we
controlled for the self-assessed beliefs. More precisely, the baseline were the Under-estimators and we included dummies
for Unbiased and Over-estimators. The results are presented in Table 3.

From column (1) we noticed the by-now familiar positive bias of the population in task B (as captured by the constant
term), and a correct relative belief of the self-assessed bias of Over-estimators, who provided higher reports than the other
two groups. By contrast, the difference between Unbiased and Under-estimators was not statistically significant. Reports in
task O (column (2)) and task U (column (3)) were not different as a function of the self-assessed beliefs, reinforcing the
idea that participants compensate for their biases. This is best understood with columns (4) and (5), where we noticed that
Over-estimators exhibited a smaller upward shading in O (11.42 — 8.91) and a larger downward shading in U (1.50 + 6.40)
than Under-estimators. Overall, the regression analysis confirms the differences in corrective behavior by individuals as a
function of their self-assessed beliefs, in particular, between Over-estimators and Under-estimators.

5. Behavioral adaptation model

If participants were at least partially aware of their biases, why were they not correcting better for them in tasks U and
0? A possible explanation is that, even though they knew their tendency to misrepresent time in a given direction, they
were unsure of the magnitude of their bias. Recall that an unbiased participant i should target t in task B, 9[,* (t) in task
U and 98‘(t) in task O. Recall also that the optimal shading should be symmetric around ¢t: t — 9[]*(t) = 96* (t) —t. Suppose
that participant i targeted the symmetric (but possibly suboptimal) intervals t — Af and t + Af in tasks U and 0O, and that he
believed he targeted t + bi instead of ¢ in task B. In his mind:

t+b —hi=t—A" and t+b +h)=t+A

Combining both equations, we could retrieve Al (the target shading around the announced time) and b (the perceived
bias):

hy, + hy = hjy —hy
== and b'= 5
In words, a participant with a perceived positive bias (b’ > 0), an Over-estimator, would shade downwards in U more than
shade upwards in O (h{J > hg). The opposite would be true for a participant with a perceived negative bias, an Under-
estimator.

We used this behavioral model to estimate the perceived bias of each individual based on the observed shadings. We
found that the estimated perceived biases of the participants were consistent with their beliefs: —3.38 for Under-estimators
(lowest and significantly negative, p-value = 0.008), —1.51 for Unbiased (not significantly different from zero, p-value =
0.053), and 2.94 for Over-estimators (highest and significantly positive, p-value = 0.045). Furthermore, participants acted as
if they targeted on average A = 5.67, with no significant differences across groups (mean between 5.4 and 5.9, t-tests all
p-values > 0.4). This number was in the order of magnitude of our calibrated optimal shading t — 6;;(t) = 65(t) —t = 4.72.

Ai
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Fig. 6. Average reports (left) and average perceived reports (right) of self-perceived Under-estimators, Unbiased and Over-estimators. Reports across groups
are different in task B, but beliefs are correct and participants shade according to them, so reports across groups are not statistically different in tasks U
and O.

Overall, even though we observed reports as represented in Fig. 6 (left), participants acted as if they believed that their
behavior was consistent with the perceived reports represented in Fig. 6 (right). This behavioral model provided an as if
representation of behavior that was both consistent with self-assessed biases and empirically observed biases.

6. Discussion

It has been proposed that perceived time synchronizes with the ticking of an internal clock (Treisman, 1963), an idea
mathematically represented by the scalar timing model (Gibbon, 1977). This internal clock consists of a pacemaker that
emits pulses (ticking) stored in an accumulator. Accuracy is obtained when the pacemaker is perfectly synchronized with ob-
jective time, and distortions occur when it speeds up or slows down. In our framework, when a time interval is announced,
the participant chooses a target as a function of the reward (decision stage), and this target is implemented subject to noise
and biases (time production stage). This time production stage corresponds to what an accumulator model would focus on.
Instead, our main focus is on the decision stage.

The results obtained in our baseline task B were comparable to previous studies of production of similar time intervals
(Matell and Meck, 2000; Wittmann et al., 2007). Instead of asking directly participants to be as accurate as possible, we
rewarded them for accuracy. As expected, this variant in design did not produce inconsistent results. On average, mean
accuracy was violated as participants tended to overestimate time. However, the distributions of reports were symmetric,
and the scalar property of interval timing was satisfied (see Appendix A.5 for details). The observed tendency to overestimate
was also consistent with findings in Brocas et al. (2016), where we used the same experimental procedure. In that study,
we observed a form of Vierordt’s law over the second to minute range and intervals around 30s were, on average, over-
estimated.

A key result of our analysis is that biases in time perception carry over across different incentives schemes while
decision-making is optimal conditional on biases. This result has two implications. First, it suggests that time-keeping mech-
anisms are dissociated from decision-making mechanisms. Reports that do not agree with theoretical predictions in U and O
result from errors in perception, not from the inability to optimally shade. Second, optimality of decision-making indicates
that the decision system is tuned to optimize behavior. These two implications together provide support for modeling the
brain as an organization of systems acting optimally within their range of action, in the tradition of earlier brain-based dual
process theories (Brocas and Carrillo, 2008). For instance, decision-making that requires time considerations (e.g. dynamic
choices or choices under time constraints) could be modeled as an interplay between a time keeping system that processes
the perception of time and a decision-making system that receives (possibly biased) time related information and uses it to
formulate a decision.

Another key result is that participants had correct beliefs about their choices in B and took correct decisions given those
beliefs in tasks U and O (even though beliefs were elicited after completing all three tasks). This suggests that awareness
of their own time distortions determined how they made decisions regarding time estimates. However, this knowledge was
imperfect. Indeed, participants were aware of their biases but (i) they were not able to anticipate them and correct for them
in task B, and (ii) they missed the magnitude of the bias to fully adjust their behavior in tasks U and O. Decisions in the
latter tasks suggest that participants possessed at that point specific knowledge about their performance in the previous
task B, knowledge that helped them find their best course of action in subsequent tasks. Even in the absence of feedback,
participants were able to access introspectively their experience of time and to measure it accurately.

The fact that biases were not anticipated beforehand, and not entirely corrected for afterwards is intriguing. It indicates
in particular a limitation of metacognition. Investigating the relationship between intrinsic limitations of metacognition in
time perception and behavioral anomalies involving time management, such as chronic lateness, seems to be a promising
alley to investigate.

Last, as discussed in the introduction, we expected that the increase in cortisol levels generated by the CPT would have
an (unobservable) effect on dopamine release resulting in an (observable) increase in time perception. However, although
cortisol levels were significantly increased, time estimation was not significantly different between the two populations.
This absence of effect paralleled an absence of differences in self-assessments of stress levels. A possible interpretation of
these unexpected findings is that different types of stress may affect information processing differentially, as suggested in
Kogler et al. (2015). Such hypothesis would need further investigation.
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Fig. 7. In this example, the instructions read: “Please click the cell where the column to the right of the column labeled athena intersects the row above
the biology row.” The correct answer required a click on the cell where the 1st row and 5th column intersect.

Appendix A
A.1. Physiological stress and the Cold Pressure Task (CPT)

The Cold Pressure Task (CPT) is a well-established method to induce physical stress and has been safely used on adults
and children since the 1930s (Hines and Brown, 1936). Each subject had an elastic band placed on their left arm slightly
above the protrusion where the ulna connects to the wrist. Subjects were then required to spread their fingers and place
their non-dominant hand in ice water at 4-6 °C to a depth that reached the elastic band for a certain period of time (in
our experiment, 3 min). To ensure that CPT was a salient stressor, we used a slight variant called the Socially Evaluated
Cold Pressor Task (Schwabe et al.,, 2008). In this variant, we instructed participants to look directly into a camera that
video recorded their facial expression during the hand submersion process. To increase stress further, an experimenter stood
behind the participant during the process. All our participants complied with the task. Since stress responses widely vary
across individuals, we followed most of the literature on stress (Bos et al., 2009; Brocas et al., 2017; Preston et al., 2007) and
implemented a between-subjects design, with Control (non-CPT) and Stress (CPT) subjects. This method also avoids learning
and endowment effects.

The level of physiological stress was assessed by collecting three saliva samples per participant (Base, Peak and End of
experiment) in order to measure changes in cortisol levels. We measured cortisol levels of all 170 participants (CPT and non-
CPT) using the “passive drool” method, where subjects spit directly into a test tube to a level of at least 2.5 mL per sample.
Immediately after collection, samples were stored in a freezer below —20 °C. Within seven days of collection, samples were
shipped in frozen shipping containers to ZRT laboratories for testing (see http://zrtlab.com for details). Results were sent
back within one week.

A.2. Interfering task
A.3. Theory
The payment l'[k(rL) for participant i in task k as a function of the report r;'( is:

max {0, i=@=0t gl e rh<t

. at
Mp(ry) = ;
(+a)t—ri . i
max {0, —+—2G; if rp>t
) rh—(1-a)t . i
Mu(r) = max {0, O e G} if rq <t
if >t
) 0 if <t
iy _ i )
Mo(ro) = max {0, 7(“0;):40 G} if >t

as graphically depicted in Fig. 1. In the experiment, G =$20 and o = 0.4. Needless to say, these functional forms were not
presented to subjects. Instead, we explained that they would earn $20 if the report coincided with t and lose 50¢ for each
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1% that their report was above or below the announced interval in task B (with the corresponding instructions for tasks U
and 0).

Proposition 1. (i) 6; () = t; (ii) 6 () € (1 —a)t, 0); (iii) 65 (t) € (¢, (1+a)t); and (iv) 65 (t) — 65 () = 65() — O5(0).

Proof. For expositional convenience, we drop the announced interval t from the target function 8. We also drop the par-
ticipant’s superscript i. We assume risk-neutral profit maximizing individuals, although the results carry over to risk-averse
individuals. Let a = b + ¢. Given a target 0, in task k, we know from (4) that the report is:

1, =6+a where a~ F(a)

(i) Baseline (B). In task B, the expected payoff of the participant, Vs, is:
G t—0p (1+(1)t—93
Vg = — / (a+93—(1—a)t)f(a)da+/ ((1+a)t— (a+93))f(a)da
at a=(l—a)t—0p a=t—0p
at e t=0p
6VB = ((a +0p) — (1 — a)t)F(a) — / F(a)da
(1—a)t—0p (1—a)t—0p
(1+Oz)t—93 (1+()¢)f/—93
+((1+a)t = (a+05)) Fla) + Fl(a)da
t—0p t—0p
(1+a)t793 t—0p
= / F(a)da — / F(a)da
t—0p (1—04)25—93
Optimizing over the target 6g, we can write the first-order condition as:
% 0o [F(t —0;) —F((1 - a)t — 9,;)] - [F((l )t -6 —F(t —eg)] —0
B {4
t—6; (14a)t—6;
N / f(ayda = / f(a)da 5)
(1-a)t-6; t-0;
The second-order condition can be written as:
ot BZVB
Caa = €0~ F(Q =)t =6) |+ [ £+ )t — ) — (e~ )]

t—0p (1+a)t—6p
- / F(a)da+ / f(a)da
( t—0p

1-a)t—6p

@ o =0
flay = Ty

_/r—0§ f’(t—eg)dH/“*“)“%‘ fre-6p,
t

Log-concavity of f{a) implies that for all a = t — 0. Therefore,

ot 82VB

< —_—= — 7da
0; (1-a)t—03 ft—6;) -0; f@t-6;)
fr(t - 95) /t—0§ (1+a)t-6;
< — 57| _ a da+/ a)da| = 0
FE 0 | Jowng @ ), @
so 65 (t) is unique and a maximum. Finally, from (5) it is trivial to check that:
i) =t

since by the symmetry of f{a), we have:

0 at
J(ayda~ fo f(a)da

(ii) Under-report (U). In task U, the expected payoff of the participant, Vy, is:

Uy, = /at_e” (a+9u - —a)t)f(a>da

G —(1—e)t—6y

t=0y t—0y
- ((a+9u)— a —a)t)F(a) _/ F(a)da
A-ay-g, OO0
t—6y
:atF(t—HU)—/ F(a)da
(1-a)t—6y
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Optimizing over the target 6y, we can write the first-order condition as:

% o 0 F(t - eg(t)) - F((l P eg;(t)) - atf(t - 9,7@)) -0
o [0 [r@-fe-apia=o ©)

The second-order condition can be written as:

at 2y
Gay)>?

- /( o [re-60) - r@]aa

1-a)t—6y

—f(t = 0y) + f((A —a)t —Oy) +atf(t —0y)

Again, log-concavity of f{a) implies that f (a) ff((: g*) for all a < t — 6. Therefore,
at 9%V /“96 , fr(t - 9 )
— | < t—6, da
G 9(ty)? 6 -6 =6 - ft—05) f( )
-6y

-6 ;
= f =65 Ja-ay-g; [f(t — 6 - f(a)] a=0

Therefore 6;(t) is unique and a maximum. Finally, from (6) it is trivial to check that:
05(t) € (1 —a)t,t)
since:

Olt BVU
G 6y

2/0 [f(a) f(at)]da ~0and ¥ g\gu

- / [r@ -1 ]aa<o

(1-a)t

(iii) Over-report (O). In task O, the expected payoff of the participant, Vp, is:

at (1+a)t—06o
“y, :/ F(a)da — at F(t — 6p)
G a=t—6y

Optimizing over the target 6, we can write the first-order condition as:

g—gg o =0 —F((l +a)t —%(t)) +F(t - 95(t)> +atf(t - eg(r)> -
“ ::‘””’95 [f(t —05) - f(a)]da =0 (7)

The second-order condition can be written as:

at 32VO

C 02 F((+ )t —6p) — f(t—00) —atf (t—6)

- T @ - - 00) Jda

t—6p

Log-concavity of f{a) implies that ’}/((f)) ﬁ,((t[ 90*) for all a > t — 6. Therefore,
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at 82V0 (1+a)t-0; f/(t )
T30, </t_6* [m o )f( ) - f(t- O)i|da

4 _9 (1+a)t-6}

ff((tt_g)) [f(a)—f(t—ez;)]da =0

Therefore 6(t) is unique and a maximum. Finally, from (7) it is trivial to check that:
05(t) e (t, 1+ a)t)
since:

at Vg
G 06o

ot aVo

= fom[f(O) _ f(a)]da >0and % 0, " fjn[f(fat) - f(a)]da <0

+o)t

(iv) Symmetry. Immediate once we notice that if we substitute ¢ — 6 with 63 —t in (6), we obtain (7). O

Prediction 2 is a consequence of the fact that, by construction, E[b'] = 0. Then, by Proposition 1(i), E [rg] = 6 =t. Predic-
tion 3 and Prediction 4 are immediate using similar arguments and given 65 — 6; = 6} — 6 > 0.

A4. Calibration
To calibrate the optimal targets in U and O, we impose bi ~ N(0, o2). This means that:

a'=b'+&'sim N(0,z7) where z7 =02+ n}

Notice that E[b'] =0, g(b') = L¢ % = g(—b'), and fla') is log-concave since the Normal distribution is log-concave, so the

assumptions of the model are satisfied.
From Proposition 1(i) we know that 6} = t. Replacing F(a) with @ (%) in (6) and (7), we obtain that 6j and 6} solve
the following first-order conditions:

t— 0 (1-oa)t—6j at | [t—0j
o(S) () ()
q><(1+a)t—9(§*>+(b<t—9(§*)+¢<t—9'*>_0 ©)
Z; Zj Zi Z;

Form the data in task B we can estimate &, the standard deviation of the bias in the population. For each participant
i in task B, we can also estimate #j;, the standard deviation in the noise of his report. In our data, we have 6 = 12.16 and
f); € [0.61, 21.14]. Therefore, Z; € [12.77, 33.3]. Inserting each value of Z; in (8) and (9), and setting & = 0.4 and t = }_t/10, we
get 9["]* €[30.86,30.92] and 9‘* [40.28, 40.34]. Averaging over all individuals, we finally obtain 6} = 30.88 and 6} = 40.32.
It is key to realize that desplte the significant variability in the variance of noise across part1c1pants optimal targets are
extremely similar to each other. It is therefore with virtually no loss of generality that we can focus on the optimal average
targets 6 and 6.

A.5. Time estimation in task B by interval

Traditional theories of subjective time rely on two properties. The “mean accuracy” property postulates that people pro-
duce time intervals that are on average equal to the interval they are required to produce. The “scalar property of variance”
requires that the sensitivity of time estimates is independent of the time to estimate (the variability to time ratio is con-
stant). We present below the p.d.f. of reports for each announced interval t (vertical line) in task B. We computed separately
the distribution for CPT (blue) and non-CPT (green) participants. These distributions were not significantly different for any
interval (KS-test, p-value > 0.05). Average reports in all intervals were significantly above the announced time t (t-tests,
p-value <0.006) implying that mean accuracy was not satisfied by our data. We also tested for the scalar property of vari-
ance by regressing the standard deviation on the mean of the reports. The R-squared of this regression was 0.55. We also
computed the coefficient of variation (standard deviation /| mean) for each announced time interval and regressed it on
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time. The slope coefficient was not significantly different from zero (p-value = 0.067). These findings indicate that the scalar
property of variance was satisfied.

Real time 31s Real time 32s Real time 33s Real time 34s
LR - R ER ER
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Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jeb0.2018.02.001.
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