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We conduct a laboratory experiment of second-price sealed bid auctions of a common value good with 

two bidders. Bidders face three different types of information: common uncertainty (unknown informa- 

tion), private information (known by one bidder) and public information (known by both bidders), and 

auctions differ on the relative importance of these three types of information. We find that subjects barely 

differentiate between private and public information and deviate from the theoretical predictions with re- 

spect to all three types of information. There is under-reaction to both private and public information and 

systematic overbidding in all auctions above and beyond the standard winner’s curse. The Cursed Equi- 

librium and Level-k models successfully account for some features of the data but others remain largely 

unexplained. 
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. Introduction 

Auctions are widespread but complex allocation mechanisms.

hey have received substantial attention in the theoretical and

xperimental literature in economics. Despite some departures

rom theoretical predictions, auctions are generally seen as rea-

onably efficient mechanisms for the allocation of items among

gents. While many informational elements are present in an

uction, the existing experimental literature generally focuses on

ne, the amount of private information. In this paper, we take

 different route and study how subjects react to three different

ypes of information : private information (information known by

ne bidder but not the other), public information (information

nown by both bidders) and common uncertainty (information

nown by no bidder). The main goal is to determine if subjects

ealize that optimal bidding depends not only on the informa-
� We gratefully acknowledge the financial support of the National Science Foun- 

ation grant SES 1425062, the LUSK Center for Real Estate, the Microsoft Corpora- 

ion and the Fundacao para a Ciencia e Tecnologia from the Portuguese Ministry of 
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ion they possess/ignore but also on whether this information is

ossessed/ignored by other bidders. 

To this purpose, we adopt the experimental design first in-

roduced by Brocas et al. (2015) in the context of a first-price

ealed bid auction, add some small variants, and study behavior

n a second-price sealed bid auction. Formally, we assume that

he value of the good is the sum of N independent “components.”

ach bidder observes only a subset of these components and

nows which components are and are not observed by the other

idder. By varying the number of components observed by each

idder, we parsimoniously change the information structure of the

uction. We consider five information structures. Three have only

ne type of information: only common uncertainty, only private

nformation, and only public information. The remaining structures

ave two types of information: one has private information and

ommon uncertainty and the other has private information and

ublic information. 

Brocas et al. (2015) show that more than half of the subjects

n the first-price auction do not differentiate between types of

nformation and that departures from equilibrium predictions oc-

ur with respect to all three types. As we will develop below, we

lso find that a majority of subjects in our second-price auction

eact similarly to private and public information. They also react

ifferently from what theory predicts under all information struc-

http://dx.doi.org/10.1016/j.socec.2016.12.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jbee
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socec.2016.12.008&domain=pdf
mailto:brocas@usc.edu
mailto:juandc@usc.edu
http://dx.doi.org/10.1016/j.socec.2016.12.008
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tures. Taken together, the two papers point to a general behavioral

anomaly regarding information processing: subjects do not act

optimally given their information because they do not realize that

possessing information matters, nor that it matters whether or not

their rival possesses that information. Overall, while the literature

on adverse selection has extensively documented that informa-

tional asymmetries result in suboptimal choices ( Samuelson and

Bazerman, 1985; Charness and Levin, 2009; Carrillo and Palfrey,

2009; 2011 ), this and our companion paper are the first to ex-

plicitly show that inefficient choices occur because many subjects

behave similarly when information is private or public. 

A key distinguishing feature between the two studies is that the

symmetric Nash Equilibrium (NE) bidding strategy in the second

price auction can be decomposed into additively separable parts,

each related to a type of information. Therefore, the individual

effects of each type of information on the bidding strategy can be

analyzed separately. 1 With respect to private information, subjects

must bid their strategically estimated valuation (which is twice

their signal as in the typical second-price common value auction à

la Milgrom and Weber, 1982 ). With respect to common uncertainty

and public information, subjects compete à la Bertrand and bid the

expected value and the realized value, respectively. As a result, we

can study the marginal effect of each change in the information

structure on the bid. The separability property also lends itself to a

structural estimation of behavioral models. To assess the behavior

of subjects and compare it with the NE prediction, we analyze

our experimental data from three different angles: we perform

an aggregate descriptive analysis, we run a regression analysis to

explain the bid as a function of the information known by the sub-

ject (public and private), and we perform a structural estimation of

two behavioral theories, Level-k (Lk) and Cursed Equilibrium (CE). 

The main conclusions of our analysis are the following. As

mentioned above, the first and arguably most robust result is that

the subjects’ reaction to new information depends only marginally

on its type. In other words and complementing Brocas et al.

(2015) , bidders treat private and public information much more

similarly than they should. The second finding is that the observed

behavior departs from NE regarding the three types of information

and these departures depend on the information revealed. There

is overbidding of common uncertainty which increases with total

information. The reaction to private information is significantly

smaller than predicted by theory and it increases with total

information. Finally, the reaction to public information is constant

and slightly smaller than NE. Significant departures occur even

in auctions with no information and full information. The third

conclusion relates to behavioral theories. Both the CE and Lk mod-

els can be seen as successful in that they parsimoniously explain

some important features of the data, namely overbidding when

the value of the private information is small and under-reaction to

increases in that information. However, both models fail to capture

the extra overbidding (above and beyond the winner’s curse) and

the substantial heterogeneity observed in our sample. It suggests

that there is still room for improvement on existing theories. 

Our analysis relates to two strands of the experimental lit-

erature: common value auctions and auctions with variable

information. Second-price common value auctions have been

extensively studied in the laboratory. In the typical setting (e.g.,

Kagel et al., 1995 ), the good is drawn from some distribution and

bidders receive independent signals centered around the true real-

ization. In our study, we model the value of the good as the sum

of N independent signals, and each of them may or may not be
1 By contrast, in a first-price auction, as information about certain components 

gets revealed, the bidding strategy changes for all the components of the good (and 

not only for the components affected by the change). It is therefore difficult to pin- 

point the contribution of each component to the bidding strategy. 

e

b

d

t

bserved by bidders. This is formally closer to Albers and Harstad

1991) ; Avery and Kagel (1997) and Klemperer (1998) . 2 As noted

bove, our paper is different in that we explicitly model compo-

ents characterized by different types of information for which

ubjects bid independently, and we vary the relative importance

f those components for comparative statics of bids and payoffs. 

A few experimental articles study auctions with different

mounts of information. Andreoni et al. (2007) study private value

rst- and second-price auctions in which bidders know their own

aluation and the valuation of some other bidders. Naturally, the

rivate value setting precludes any winner’s curse problem. Mares

nd Shor (2008) analyze common value first- and second-price

uctions with constant informational content but distributed

mong a varying number of bidders. The paper explores the

rade-off competition vs. precision of estimates. Grosskopf et al.

2010) vary the number of bidders who receive a signal about the

ommon value of the good in a first-price auction. They find that

he winner’s curse increases with private information. However,

hey do not consider how other types of information may affect

he bidding strategy of the subjects. 

The paper proceeds as follows. The theoretical framework is

eveloped in Section 2 and the experimental setting and hy-

otheses are presented in Section 3 . The aggregate analysis of

he experimental data, including the regression analysis, is dis-

ussed in Section 4 . Behavioral models are tested in Section 5 and

onclusions are presented in Section 6 . 

. Theoretical model 

Consider a single common value good made of N components

with N even and greater than or equal to four). Each component

 ∈ { 1 , . . . , N} has a value x i independently drawn from a continu-

us distribution with positive density g ( x i ) on [ x , x ] and cumulative

istribution G ( x i ). The total value of the good is the same for every

ndividual and equal to the sum of the components, V = 

∑ N 
i =1 x i . 

Two risk-neutral bidders, A and B indexed by j , bid for this

ood in a second-price sealed bid auction with no reserve price.

efore placing their bids, A observes the first r components of the

ood, { x 1 , . . . , x r } , and B observes the last r components of the

ood, { x N−r+1 , . . . , x N } , where r ∈ { 1 , . . . , N} . We also consider the

ase where bidders A and B observe none of the components of

he good, which we denote by r = 0 . 

In this model, each bidder observes exactly r components

nd does not observe exactly N − r components, and each bid-

er knows which components are and are not observed by the

ther bidder. We can define three types of information: private

nformation , the components that only one bidder observes; public

nformation , the components that both bidders observe; and com-

on uncertainty , the components that no bidder observes. Notice

hat there is only common uncertainty when r = 0 , only private

nformation when r = N/ 2 and only public information when

 = N. There is common uncertainty and private information when

 ∈ { 1 , . . . , N/ 2 − 1 } and private information and public information

hen r ∈ { N/ 2 + 1 , . . . , N − 1 } . For the rest of the analysis, it is

seful to introduce the following notation. 

• X r 
A 

= 

∑ min { r,N−r} 
i =1 

x i : sum of A’s private information when

r ∈ { 1 , . . . , N − 1 } 
• X r 

B 
= 

∑ N 
i = max { N−r +1 ,r +1 } x i : sum of B’s private information when

r ∈ { 1 , . . . , N − 1 } 
2 In the first of these studies the value of the good is the sum of N signals and 

ach of the N bidders observes one signal. In the last two studies, each of two bid- 

ders has one private signal. The value of the good is the sum of signals for one 

idder and the sum of signals plus a private value component for the other bid- 

er. When the private value component is zero, their model is equivalent to our 

reatment with only private information. 
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Fig. 1. User interface for the second-price auction. 
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4 Documentation and instructions for downloading the software can be found at 
• E[ X r ∅ ] = 

∑ N−r 
i = r+1 E[ x i ] : expected common uncertainty when

r ∈ { 0 , . . . , N/ 2 − 1 } 
• X r 

Pub 
= 

∑ r 
i = N−r+1 x i : sum of public information when

r ∈ { N/ 2 + 1 , . . . , N} 
Proposition 1 characterizes the symmetric Nash Equilibrium

NE) bidding strategies in this auction as a function of r . 

roposition 1. The symmetric Nash Equilibrium bidding strategy of

idder j is: 

• b r 
j 
= E[ X ∅ ] when r = 0 , 

• b r 
j 
(X r 

j 
) = E[ X ∅ ] + 2 X r 

j 
when r ∈ { 1 , . . . , N/ 2 − 1 } , 

• b r 
j 
(X r 

j 
) = 2 X r 

j 
when r = N/ 2 , 

• b r 
j 
(X r 

j 
) = X r 

Pub 
+ 2 X r 

j 
when r ∈ { N/ 2 + 1 , . . . , N − 1 } , 

• b r 
j 
= X r 

Pub 
when r = N. 

roof. Standard. We restrict attention to differentiable monotonic

idding strategies. Assume that B bids in round r according to

uch a function and denote it by b r ( X B ). 

Let r ∈ { 1 , . . . , N/ 2 − 1 } . The expected utility of A when he bids

 

r 
A 

is: 

 

r 
A = Pr (b r A ≥ b r (X 

r 
B )) 

(
X 

r 
A + E[ X 

r 
∅ ] + E 

[
X 

r 
B − b r B (X B ) 

∣∣ b r A ≥ b r (X 

r 
B ) 

])
t can be rewritten as: 

 

r 
A = ( X 

r 
A + E[ X 

r 
∅ ] ) F 

r (b r 
−1 

(b r A )) + 

∫ b r 
−1 

(b r 
A 
) 

X r 
( X 

r 
B − b r (X 

r 
B ) ) f 

r (X 

r 
B ) dX 

r 
B 

here F r (X r 
A 
) = 

∫ x 
x . . . 

∫ x 
x G (X r 

A 
− x 1 − · · · − x r−1 ) g(x 1 ) . . . g(x r−1 ) dx 1 

 . . dx r−1 . 

Maximizing U A with respect to b r 
A 

and imposing the symmetry

ondition b r 
A 

= b r , yields the result. The proof for the other rounds

ollows the same lines. �

The model is an extension of the “wallet game” to multiple

ypes of information (see Albers and Harstad, 1991; Avery and

agel, 1997 , or Klemperer, 1998 ). In our model, the optimal bid-

ing function can be split into two parts. The first part reflects

ommon uncertainty when r < N /2 and public information when

 > N /2, while the second part reflects private information for all

 �∈ { 0 , N} . For the first part, the risk-neutral agents compete à la

ertrand and end up bidding the expected value of the common

ncertainty or the realized value of the public information. For

he second part, agents bid ‘as if’ the private information of the

pponent is at most equal to theirs, which happens to be true in

he symmetric equilibrium. Overall, when r = N/ 2 , the model is

dentical to the wallet game. When r �∈ { 0 , N/ 2 , N} , it can be seen

s a wallet game with a third wallet whose content is known by

ither both bidders ( r > N /2) or no bidder ( r < N /2). 

Notice that second-price common value auctions have multi-

le asymmetric equilibria. For example one subject bidding the

aximum possible value, independently of the information, and

he other subject bidding the lowest possible value, also indepen-

ently of the information, is always an equilibrium of our game. 3 

n this paper, we focus on the symmetric equilibrium, although we

ill briefly discus the problem of multiplicity when we analyze

eterogeneity in the behavior of subjects. 

. The experiment 

.1. Design and procedures 

We conducted 8 sessions with either 10 or 12 subjects per

ession for a total of 92 subjects. Subjects were undergraduate
3 Multiplicity of equilibria is discussed by Milgrom (1981) and Avery and Kagel 

1997) in a general setting and by Klemperer (1998) in the context of the wallet 

ame. 

h

v

t

i

tudents at the University of California, Los Angeles who were

ecruited by email solicitation, and all sessions were conducted at

he California Social Science Experimental Laboratory (CASSEL). All

nteraction between subjects was computerized using an extension

f the open source software package Multistage Games. 4 No

ubject participated in more than one session. 

In each session, subjects made decisions over 15 paid matches,

ith each match being divided into 5 rounds. At the beginning of

 match, subjects were randomly matched into pairs and randomly

ssigned a role as bidder A or bidder B . Pairs and roles remained

xed for the 5 rounds of a match. At the end of the match,

ubjects were randomly rematched into new pairs and reassigned

ew roles. 

The game closely followed the setting described in Section 2 .

ubjects in a pair had to bid in a second-price sealed bid auc-

ion for a good made of N = 4 components. Each component

 ∈ { 1 , . . . , 4 } contained x i tokens drawn from a uniform distribu-

ion in [0, 50] (to simplify computations, we restricted x i to integer

alues). The total value of the good, V , was common to both bid-

ers and equal to the sum of the four components, V = 

∑ 4 
i =1 x i . Vi-

ually, each component was represented by a box on the computer

creen. The number of tokens inside each of the four boxes was

rawn at the beginning of the match and did not change during

he match. Subjects could see the four boxes but not their content.

The match was then divided into five rounds . Round 0 corre-

ponded to r = 0 in the theory section, where bidders could not

ee the content of any of the boxes. Both subjects submitted a

id for the entire good of value V = 

∑ 4 
i =1 x i . Subjects could not

ee the bid of their rival, instead they moved to round 1. Round

 corresponded to r = 1 in the theory section, where subjects A

nd B could observe x 1 and x 4 respectively and placed a new bid

gain for the entire good V . Again, subjects could not see the bid

f their rival and moved directly to round 2, and so on until round

 where both bidders could see the content of all 4 boxes. At the

nd of round 4, the value V of the item and the five bids of each

ubject were displayed on the computer screen. One of the rounds

as randomly selected by the computer, and subjects were paid

or their performance in that round. 5 A sample screenshot of the

ser interface in round 2 is presented in Fig. 1 . It displays the

ubject’s role, the current round, the stock of tokens, the content
ttp://multistage.ssel.caltech.edu . 
5 Notice that the order of play is always the same: from no information, to pri- 

ate information, to full information. Our experimental results may be affected by 

his specific order. However, we felt that this potential problem was offset by hav- 

ng a natural sequential presentation of information revelation. 

http://multistage.ssel.caltech.edu
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of the open boxes, a reminder of which boxes have been opened

by the rival and a reminder of the bid(s) of the subject in the

previous round(s) of that match (but not the bid(s) of the rival). 

Payoffs were computed according to the standard rules of a

second-price auction without reserve price: the highest bidder

won the item and paid the bid of the lowest bidder, while the

lowest bidder got nothing and paid nothing. Rounds 0 and 4 (with

no and full information) were included to facilitate comparisons

across rounds and to better control for effects unrelated to private

information (risk attitudes, joy of winning, etc.). Round 2 had only

private information (the standard wallet game). 

It is crucial to notice that in a second-price auction the optimal

bid for each component x i is independent of the other compo-

nents (see Proposition 1 ). In other words, if x 1 and x 4 are private

information for subjects A and B , these subjects should bid 2 x 1 
and 2 x 4 respectively for components one and four, independently

of whether components two and three are common uncertainty

( r = 1 ), private information ( r = 2 ) or public information ( r = 3) .

This is key for our experiment as it implies that the optimal bid

in round r can be decomposed into the optimal bid in round r − 1

plus the effect of the new information revealed in round r . It is

a key distinction with the first-price auction ( Brocas et al., 2015 )

where such decomposition is not possible. 

All participants started the experiment with an endowment of

300 tokens to which the payoffs of each match were added or sub-

tracted. To minimize bankruptcy situations, participants could not

bid more than their current stock of tokens. 6 We also constrained

the bids to be between 0 and 200: the minimum and maximum

possible values of the good before any information is revealed. 7 

At the beginning of each session, instructions were read by the

experimenter standing on a stage in the front of the experiment

room (a sample copy of instructions can be found in Appendix A ).

The experimenter fully explained the rules and how to operate

the computer interface. After the instructions were finished, one

practice match consisting of all five rounds was conducted, for

which subjects received no payment. After the practice match,

there was an interactive computerized comprehension quiz that

all subjects had to answer correctly before proceeding to the paid

rounds. Then, the 92 subjects participated in 15 paid matches each

of them divided into 5 rounds for a total of 75 bids per subject.

Opponents, roles and values in all four boxes were randomly

reassigned at the beginning of each match and held constant

between rounds of a match. In the end, subjects were paid, in

cash, in private, their accumulated earnings, which was equal

to their initial endowment plus the payoffs of all matches. The

conversion rate was $1.00 for 20 tokens, so each good was worth

between 0 and $10. Sessions averaged 75 minutes in length, and

subjects earnings averaged $18 plus a $5 show-up fee. 

3.2. Hypotheses 

In this section we briefly discuss our three hypotheses regard-

ing the behavior of subjects in the experiment. 

Hypothesis 1. Subjects sharply differentiate between public and

private information. 
6 Subjects in latter matches could have less tokens than necessary to play 

the Nash equilibrium and therefore be exogenously constrained. Because we gave 

enough initial capital, this happened in our experiment in less than 1% of the ob- 

servations, having no significant effect in our analysis (for a study of selection bias 

in repeated auctions, see Casari et al., 2007 ). 
7 The obvious reason for such constraint is to avoid extreme choices with large 

payoff consequences. It could potentially bias our results towards underbidding 

when the value of the item was close to 200. However, it did not have a signifi- 

cant effect in the analysis. 
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Perhaps the most novel feature of the experiment is the manip-

lation of the amount of public and private information, without

ffecting all the other elements of the auction (the value of the

ood, the opponent, the complexity of the auction, etc.). To this

urpose, opening one box at a time seems a particularly suitable

ethodology. Hypothesis 1 states that subjects will behave very

ifferently if the new information is known to be privately or

ublicly revealed, independently of whether they play in each case

ccording to Nash theory or not. To our knowledge this paper

nd Brocas et al. (2015) are the first experiments designed to

ddress the effect on bidding behavior of “knowing what the other

nows”, holding everything else constant. 

ypothesis 2. Subjects deviate from Nash equilibrium predictions

ith respect to all three types of information. However, deviations

ill be more substantial with respect to private information than

ith respect to public information and common uncertainty. 

Note that Hypothesis 1 does not claim that subjects will closely

ollow the theoretical predictions. Indeed, we know from previous

xperiments that subjects fall prey of the winner’s curse in com-

on value games with private information ( Kagel and Levin, 2008

nd others) and over-price in Bertrand competition games ( Abbink

nd Brandts, 2008 and others). Hypothesis 2 states that, in accor-

ance to previous research, we expect deviations with respect to

ll three types of information. However, our design will allow us

o determine whether deviations from equilibrium bids are more

ronounced with respect to one type of information or another,

nd also which shape they take (overbidding or underbidding and

verreaction or under-reaction to information). 

ypothesis 3. Cursed equilibrium and level-k theories can explain

he behavioral departures of our subjects. 

Recent behavioral theories (cursed equilibrium, level-k and

ther combinations) have received empirical support in private

nformation experiments in general ( Carrillo and Palfrey, 2009 and

ogers et al., 2009 ) and in auctions in particular ( Eyster and Rabin,

005 and Crawford and Iriberri, 2007 ). Hypothesis 3 argues that a

arametric estimation of these two behavioral theories should fit

he data reasonably well. Notice that this hypothesis is indirectly

elated to Hypothesis 2 . Since cursed equilibrium predicts no devi-

tion with respect to public information and common uncertainty,

 good fit is only possible if the major driving departure from

quilibrium behavior is due to private information. 

. Aggregate analysis 

Our first analysis consists in comparing the aggregate results

n our sample with the NE predictions. To do this, we construct a

ew sample containing the predicted bids if everyone played the

ymmetric NE strategy. In the first part of this section we present

 simple unconditional aggregate analysis of bids and payoffs in

ach round. In the second part, we study how the aggregate bids

hange over rounds in order to understand how subjects perceive

he different types of information. In the third part, we use an

LS regression to study the empirical bidding as a function of the

ubject’s information, both private and public. 

.1. Aggregate bids and payoffs 

The first cut at the data consists in an aggregate analysis per

ound in order to compare actual behavior with the NE predic-

ions derived in Proposition 1 . Fig. 2 shows the difference between

ctual bids and NE predictions in each round r ∈ {0, 1, 2, 3, 4}. For

ach observation, we compute the NE bid and subtract it from the

orresponding observation. The line in the middle is the median

f this statistic, whereas the top and bottom lines are the 75 th and
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Fig. 2. Deviations from Nash Equilibrium. 

Table 1 

Average bids. 

Round 0 1 2 3 4 

Mean Data 118.1 ∗∗∗ 116.2 ∗∗∗ 113.1 ∗∗∗ 110.8 ∗∗∗ 110.4 ∗∗∗

(1.10) (1.08) (1.12) (1.15) (1.24) 

Mean NE 100 101.05 99.76 99.76 99.76 

(0.00) (0.80) (1.13) (0.97) (0.79) 

∗ , ∗∗ , ∗∗∗: Significantly different from Mean NE at 90%, 95% and 98% con- 

fidence level ( t -test) (Standard errors in parenthesis) 
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Table 2 

Average gains. 

Round 0 1 2 3 4 

Mean Data 1.27 ∗ 2.44 ∗∗∗ 4.53 ∗∗∗ 4.65 ∗∗∗ 3.49 ∗∗∗

(0.83) (0.76) (0.67) (0.60) (0.61) 

Mean NE −0 . 12 7.87 12.17 8.52 0.00 

(0.56) (0.50) (0.47) (0.32) (0.00) 

∗ , ∗∗ , ∗∗∗: Significantly different from Mean NE at 90%, 95% and 98% 

confidence level ( t -test) (Standard errors in parenthesis) 
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8 We use this crude distinction between ‘high’ and ‘low’ to have few categories 

with enough observations each. Similar results are obtained with three categories. 

With more categories the analysis lacks statistical power. Obviously, there are other 

ways to look at the data. For example, looking separately at cases where new (pri- 

vate or public) information requires an upward vs. a downward revision of the bid. 
5 th percentiles. The notches are the 95% confidence interval for

he median. In rounds 1, 2 and 3 (auctions with different degrees

f private information), we observe a large dispersion in the data,

onsistent overbidding with a median overbid of 10 tokens (that

s, 10% above the median value), and a roughly symmetric pattern

round the median. In round 0 (auction of an item with unknown

alue) there is also overbidding and dispersion, though quite

symmetric. Few subjects underbid, suggesting that risk-aversion

s unlikely to play a major role in the subject’s strategy. In round

 (auction of an item with known and identical value for both

idders), there is also some aggregate overbidding, fewer cases of

nderbidding than in round 0, and more than half of the bids at or

lose to NE. It suggests that joy of winning and other psychological

actors may account for some but not a large part of the subject’s

ehavior. 

Table 1 displays the average bids per round (Mean Data)

nd the equilibrium predictions (Mean NE). As in any standard

econd-price auction, the unconditional NE average bid is equal to

he unconditional expected value of the good (which is different

rom 100 only because of natural variation in sample realizations).

 comparison with Fig. 2 reveals that the average overbidding is

igher than the median overbidding. This indicates the presence

f outliers consisting of extremely high bids. As we will see later,

ome subjects bid the maximum amount of 200 tokens indepen-

ently of their value and information. Moreover, the average bid

ecreases across rounds, so that more total information makes

idders (weakly) less aggressive. 

Table 2 shows the average empirical and predicted gains. If all

ubjects follow the equilibrium strategy, they only extract rents

rom private information, since they compete à la Bertrand for

he known and unknown components. Therefore, the predicted

ains are hump-shaped across rounds: zero in rounds 0 and 4,

nd maximum in round 2. By contrast, the observed overbidding

mplies that gains in our sample are substantially smaller than NE

n the rounds with private information (1, 2 and 3). In rounds 0
nd 4, bidders have positive gains on average. This occurs because

f a well-known problem in a second-price auction: if a few

ubjects bid at (or close to) zero, their rivals greatly benefit at the

xpense of the seller. 

These preliminary findings are summarized in the following

esult. 

esult 1. There is overbidding relative to NE and a large disper-

ion of bids in all rounds. Gains are smaller than NE in rounds

ith private information and larger otherwise. 

.2. Aggregate change in bids 

The previous analysis is instructive but incomplete as it does

ot distinguish by amount or type of information. This section

tudies, still at the aggregate level, how subjects react to dif-

erent types of information. A first natural question, raised in

ypothesis 1 , is whether subjects understand the differences in

he types of information and act accordingly. In rounds 1 and 2,

he last box revealed consists of private information, whereas in

ounds 3 and 4, the last box revealed consists of public informa-

ion. Therefore, NE predicts that for the same value in the last

ox, the change in bids in rounds 1 and 2 should be different

han the change in bids in rounds 3 and 4. In this section we test

his prediction. Moreover, since bids in early rounds depart from

quilibrium predictions, studying changes in bids across rounds

lso addresses the following question: are deviations in later

ounds due to imperfect adjustments or to carrying over some

nitial miscalculations? 

We analyze the change in bids between two consecutive

ounds as a function of two variables: the value of the new box

evealed and the sum of the open boxes. Formally we organize

he two variables somewhat arbitrarily into ‘high’ values and ‘low’

alues. High values ( H ) correspond to cases in which the sum

f the values in the boxes already open (first variable) and the

alue in the new box (second variable) are above their expected

mounts. 8 Similarly, low values ( L ) correspond to cases in which

he sum of the values in the boxes already open (first variable)

nd the value in the new box (second variable) are below their

xpected amounts. We construct four groups ‘ H to H ’, ‘ H to L ’, ‘ L

o H ’ and ‘ L to L ’ where the first letter refers to the value of the

um of open boxes and the second to the value of the new box.

or each of these four groups we calculate the average change in

ids between round r and round r + 1 with r ∈ {0, 1, 2, 3} (bid

n r + 1 minus bid in r ), which we called ‘ r to r + 1 ’, and present

he results in the columns of Table 3 . The rows are divided into

he four groups previously described. For each group we present

he NE predictions and the data. The last two columns contain

he p -value of a normal ( N ) and non-parametric (NP) test for the

ifference in means across rounds. 
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Table 3 

Average change in bids over rounds (bid in r + 1 - bid in r ). 

0 to 1 § 1 to 2 2 to 3 3 to 4 p-val N 

† p-val NP †† 

L to L NE −25 . 61 −25 . 44 −3 . 68 −6 . 96 0.00 0.00 

Data −12 . 43 −15 . 49 −15 . 37 −12 . 69 0.30 0.49 

H to L NE −24 . 65 −20 . 17 −19 . 78 0.00 0.00 

Data −12 . 05 −10 . 67 −10 . 93 0.79 0.78 

L to H NE 25.85 26.53 22.53 18.94 0.00 0.00 

Data 7.70 10.48 7.87 9.82 0.40 0.01 

H to H NE 25.30 4.94 5.54 0.00 0.00 

Data 7.94 11.66 11.04 0.20 0.04 

§: Round 0 has no information so only the second category is relevant. † : ANOVA test. †† : 

Kruskal–Wallis test. 
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According to the NE described in Proposition 1 , bids of subject

A should be: 

Round 0 Round 1 Round 2 Round 3 Round 4 

4 E[ x ] 2 E[ x ] + 2 x 1 2 x 1 + 2 x 2 2 x 1 + x 2 + x 3 x 1 + x 2 + x 3 + x 4 

This implies that the change in bids should be: 

0 to 1 1 to 2 2 to 3 3 to 4 

2 x 1 − 2 E[ x ] 2 x 2 − 2 E[ x ] x 3 − x 2 x 4 − x 1 
(1)

In the first two cases, the change in bids depends on private infor-

mation and uncertainty whereas in the last two cases the change

in bids depends entirely on public information (the behavior of B

is determined analogously). 

As we can see from the NE rows of Table 3 , the change in

bids predicted by theory depend (obviously) on whether the new

and open boxes are above or below average. However, they also

strongly depend on whether the new information is public or

private. This can be best grasped by looking at the first and last

groups. 

In the ‘ L to L ’ group, the theoretical changes in the private

information columns (‘0 to 1’ and ‘1 to 2’) are 2 E (x 1 | x 1 < E [ x ]) −
2 E[ x ] = −25 and 2 E(x 2 | x 2 < E[ x ]) − 2 E[ x ] = −25 whereas the

theoretical changes in the public information columns (‘2 to 3’ and

‘3 to 4’) are E (x 3 | x 3 < E [ x ]) − E (x 2 | x 2 < E [ x ]) = 0 and E (x 4 | x 4 <
E[ x ]) − E(x 1 | x 1 < E[ x ]) = 0 (the difference between these values

and those reported under NE are due to the natural variation in

sample realizations). In the ‘ H to H ’ group, the results are identical

with opposite signs. Overall, in these two extreme cases, NE bid

changes are large and significant under revelation of private infor-

mation and insignificant under revelation of public information. 

In the data, the change in bids between the private and public

information columns is not statistically significant in ‘ L to L ’. It

is significant under the non-parametric test in ‘ H to H ’ but small

and with the opposite sign than predicted by theory. So, in both

groups, the difference in the reaction by our subjects to private

vs. public information is not as sharp as the theory would predict.

This is also the case in ‘ H to L ’ and ‘ L to H ’, although the theoreti-

cal differences are not as big, so the contrast is not as striking. All

in all, subjects in our experiment act as if they only considered

the amount in each box and not the type of information the box

is revealing to themselves and to their opponents. 9 This finding is

summarized in the next result. 

Result 2. Hypothesis 1 is not supported by the data: subjects

barely distinguish between public and private information. 
9 As developed in footnote 8, this is only one possible way of looking at the data 

across rounds. An alternative would be to run the regressions y 1 = α0 + α1 x 1 + ε1 , 

y 2 = α0 + α2 x 2 + ε2 , y 3 = α0 + α2 x 2 + α3 x 3 + ε3 , y 4 = α0 + α1 x 1 + α4 x 4 + ε3 where 

y r is the empirical change in bid between round r − 1 and round r . We could then 

compare the α-coefficients to those predicted by (1) . This would be analogue to 

the within-round regression conducted in Section 4.3 . Each method has its pros 

and cons. 

d  

r  

w  

s  

c

 

c  

v  
.3. Regression analysis of bidding strategies 

In Section 4.1 , we showed consistent overbidding in every

ound and in Section 4.2 we emphasized departures from theoret-

cal predictions in the reaction to information between rounds. We

ow study how bids react to information within rounds. Indeed,

he insufficient distinction between private an public information

ighlighted in Result 2 may be caused by deviations from Nash

ith respect to some or all types of information. To study this

uestion, we run the following OLS regressions for rounds 0 to 4: 

b 0 o = α0 + ε 0 o 

 

1 
o = α1 + β1 P ri v 1 o + ε 1 o 

 

2 
o = α2 + β2 P ri v 2 o + ε 2 o 

 

3 
o = α3 + β3 P ri v 3 o + γ 3 P ub 3 o + ε 3 o 

 

4 
o = α4 + γ 4 P ub 4 o + ε 4 o 

n these equations, P ri v r o is the variable of private information

tokens observed by only one bidder) in observation o of round

 . This variable appears only in the OLS regression of the rounds

here there is private information (1, 2 and 3). P ub r o is the vari-

ble of public information (tokens observed by both bidders) in

bservation o of round r . This variable appears only in the OLS

egression of the rounds where there is public information (3 and

). Finally, the constant term captures the common uncertainty

expected tokens in the components observed by no bidder). The

redictions of Nash theory for the constant term ( αr parameter)

re α0 = 100 , α1 = 50 , and α2 = α3 = α4 = 0 , which correspond

o the expected number of unobserved tokens in each round.

he predictions of Nash theory for the coefficient of private in-

ormation ( βr parameter) are β1 = β2 = β3 = 2 . Indeed, in the

ymmetric equilibrium of a second-price auction, agents bid as if

he private information of the opponent is at most equal to theirs,

ence the coefficient of the rival’s private information is the same

s the coefficient of the bidder’s own private information. Finally,

he predictions of Nash theory for the coefficient of public infor-

ation ( γ r parameter) are γ 3 = γ 4 = 1 , since there is Bertrand

ompetition for the observed tokens. 

The goal of the regression is to compare the αr , βr and γ r 

oefficients estimated in our sample with the NE predictions using

 t-test. Notice that, in contrast with some other auctions (and,

n particular, with the first-price auction in Brocas et al., 2015 )

heoretical bids are linear in the three types of information, so

o approximation is necessary. The coefficients have simple pre-

ictions and sharp interpretations. Furthermore, behavior across

ounds can be easily compared because of the separability of bids

ith respect to components. Indeed, if a component keeps the

ame type of information in two different rounds, the bid for that

omponent should not change. 

The results of the five OLS regressions are displayed in the

olumns of Table 4 . For each round, we include the relevant

ariable(s) (Priv., Pub., constant) and present both the theoretical
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Table 4 

Nash Equilibrium and OLS regression per round. 

Round 0 Round 1 Round 2 Round 3 Round 4 

NE Data NE Data NE Data NE Data NE Data 

Priv. — — 2 0.75 ∗∗∗ 2 0.84 ∗∗∗ 2 0.95 ∗∗∗ — —

(0.002) (0.002) (0.002) 

Pub. — — — — — — 1 0.86 ∗∗∗ 1 0.89 ∗∗∗

(0.002) (0.00) 

constant 100 118.14 ∗∗∗ 50 96.99 ∗∗∗ 0 71.45 ∗∗∗ 0 4 4.4 4 ∗∗∗ 0 22.03 ∗∗∗

(0.07) (0.10) (0.11) (0.13) (0.12) 

F-test 274.15 ††† 266.43 ††† 377.47 ††† 130.29 ††† 59.68 ††† 

Adj. R 2 — 0.01 0.12 0.23 0.27 

Standard errors clustered by subject in parenthesis ∗ , ∗∗ , ∗∗∗: Significantly different from NE at 90%, 95% and 

98% confidence level ( t -test) † , †† , ††† : Significantly different from NE at 90%, 95% and 98% confidence level 

(F-test) 
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Fig. 3. NE and OLS regression: graphical display. 
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redictions (NE) and the estimated coefficients (Data). Fig. 3

resents all the bids in rounds 1–4 as a function of the informa-

ion possessed by the bidder, whether it is only private (rounds

 and 2, upper left and upper right graphs), only public (round 4,

ower right graph) or both private and public (round 3, lower left

hree-dimensional graph). We also include for each graph the NE

unction and the OLS fit given by the estimates of Table 4 . 

We can see from Table 4 that all coefficients are individu-

lly and jointly significantly different from the Nash predictions.

here is a large dispersion in the observations (as evidenced by

ig. 3 ) causing the adjusted R 2 in Table 4 to be small. Dispersion

ecreases with the amount of total information revealed, but

emains surprisingly large even under full information (round 4).

his may be partly due to some subjects playing the asymmetric

quilibrium. Indeed, we can notice in the lower right graph of

ig. 3 a Z-shaped bidding function, with a significant fraction of

ids equal to the lowest value independently of the information
 b i (X Pub ) = 0 ), others equal to the realized public information

 b i (X Pub ) = X Pub ), and finally some others equal to the highest

alue also independently of the information ( b i (X Pub ) = 200 ). 

The constant parameter is always higher than NE, suggesting

hat overbidding is partly due to an over-estimation of the value

f common uncertainty. Notice that if subjects neglected the

act that some of the closed boxes are observed by the rival (as

uggested by Result 2 ) and the bidding of common uncertainty

as constant over rounds, then the constant term in rounds 1,

, 3 and 4 would be respectively 3/4, 1/2, 1/4 and 0 times the

id in round 0 (that is, 88.6, 59.1, 29.5 and 0, respectively). The

stimated αr coefficients in those rounds are significantly above

hose predictions but the difference is smaller than compared to

he NE prediction. Overall, there is overbidding regarding common

ncertainty, which increases with the total information revealed. 

Subjects react much less to private information than what NE

redicts, although it slightly increases with the amount of total
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we do not consider level-3 and above but we consider a last level–

11 Instead, in the Poisson Cognitive Hierarchy theory ( Camerer et al., 2004 ) each 

level believes that the population is distributed among all levels below. 
12 Crawford and Iriberri (2007) have an alternative definition of level-0 which they 

call ‘Truthful.’ However, as they discuss in the paper, in regards to private informa- 

tion the truthful level-0 corresponds to the level-1 of the hierarchy anchored on 
information revealed. The coefficients are all below 1 rather than

the prediction of 2. Subjects also react less to public information

than predicted by theory, but in this case the absolute difference

between the estimated coefficients and the theoretical predictions

is small. In a nutshell, bidding as a function of private and public

information has a higher intercept and lower slope than the NE

prediction. This is quite transparent in Fig. 3 . Notice that the coef-

ficients of private and public information are similar to each other

which supports our previous finding that many subjects react

similarly to private and public information. Last, notice that round

2 is equivalent to the auction treatment in Avery and Kagel (1997) ,

but the results are somewhat different: subjects in our sample bid

more aggressively (higher intercept) and react less to information

(lower slope) than in theirs (in the next section we will compare

the estimates of the level-k model across the two datasets). The

differences could be due to anchoring effects, that is, to bids

in rounds 0 and 1 having an effect on bids in round 2. 10 The

conclusions of this section are summarized in the following result.

Result 3. Hypothesis 2 is supported by the data: subjects depart

from NE with respect to all three types of information. There

is overbidding of common uncertainty, under-reaction to public

information and strong under-reaction to private information.

Deviations are least significant for common uncertainty. 

5. Behavioral models 

As shown above and perhaps not surprisingly, subjects in our

experiment follow different strategies than NE. Several leading

behavioral models have been proposed to explain departures in

settings with private information (see e.g. Crawford and Iriberri

(2007) ; Carrillo and Palfrey (2009) or Rogers et al. (2009) for es-

timations of several models within a given game). In this section,

we explore two of them: Cursed Equilibrium (CE) and level-k (Lk).

We focus on these theories because they are based on the idea

that subjects fail to fully realize the effect of others’ information

on their behavior. Given the results of Section 4 , these models are

then good candidates to describe the strategies of our subjects.

Naturally, it would be interesting to explore some other behav-

ioral models, or combination of models, as well. Notice that the

possibility of splitting the bidding function into independent com-

ponents also extends to the behavioral models, which facilitates

their structural estimation. 

5.1. Theory 1: Cursed Equilibrium (CE) 

In the CE model, each bidder systematically underestimates

the correlation between the opponent’s bid and the opponent’s

private information. In a χ-cursed equilibrium, each bidder plays

a best response to beliefs that with probability χ her rival’s action

does not depend on her type, while with probability 1 − χ her

action does depend on her type, where χ ∈ [0, 1]. The model

is equivalent to NE when χ = 0 . Subjects are said to be “fully

cursed” when χ = 1 . In our setting and following Eyster and Rabin

(2005) , the expected utility of a cursed bidder can be computed

analytically. Let’s denote by b 
χ,r 
j 

the bid of a χ-cursed subject j in

round r . The next proposition characterizes the bid for subject A

(the analysis for B is analogous). 

Proposition 2. The difference between the CE bid and NE bid of

bidder A is: 

b 
χ,r 

A 
− b r A = χ( E[ X B ] − X A ) if r ∈ { 1 , . . . , N − 1 } 

b 
χ,r − b r A = 0 if r ∈ { 0 , N} 

A 

10 It would be also interesting to conduct an experiment explicitly designed to 

study this possibility. 

a

d

c

s

his implies that cursed bidders overbid when their private informa-

ion is below average and underbid when their private information is

bove average. 

roof. It follows Eyster and Rabin (2005) . Let r ∈ { 1 , . . . , N/ 2 − 1 } ,
ssume B bids according to an increasing bidding function

 

χ,r (X r B ) , and denote A ’s bid by b 
χ,r 
A 

. The expected utility of A can

e written as: 

 

χ,r 

A 
= Pr 

(
b 
χ,r 

A 
≥ b χ,r 

)[ 
χ( X 

r 
A + E[ X 

r 
∅ ] + E[ X 

r 
B ] ) 

+(1 − χ) 
(
X 

r 
A + E[ X 

r 
∅ ] + E 

[
X 

r 
B 

∣∣ b 
χ,r 

A 
≥ b χ,r 

])
−E 

[
b 
χ,r 
B 

| b χ,r 

A 
≥ b χ,r 

]] 
he CE bid can then be determined using the same procedure as

e did for the NE bid, and we get: 

 

χ,r 

A 
= E[ X 

r 
∅ ] + χE[ X 

r 
B ] + (2 − χ) X 

r 
A 

hen r ∈ { N/ 2 + 1 , . . . , N − 1 } , we just need to replace E[ X r ∅ ] by

 

r 
Pub 

. When r = 0 or r = N, the CE bid coincides with the NE bid

ecause there is no private information, and CE does not predict

ny deviations relative to the two other types of information. �

Cursed bidders do not fully realize that the bid of the opponent

s linked to his signal regarding the value of the item. Therefore,

hey react less to private information than NE bidders: the CE

idding function has a higher intercept and smaller slope than the

E bidding function. By contrast, since CE is a theory purely based

n imperfect account of other’s private information, it predicts

o deviations from theory with respect to public information and

ommon uncertainty (so, in particular, it coincides with NE in

ounds 0 and N ). Also, notice that because the CE bidding function

s equal to NE when X A = E[ X B ] , the unconditional CE average bid

s equal to the unconditional NE average bid. Finally, deviations

rom NE are stronger for more extreme (upward or downward)

ealizations of the signals, which are more likely to occur when

he support of the distribution of private information is larger

that is, in round 2 of our experiment). 

.2. Theory 2: level-k (Lk) 

The level-k model relaxes the assumption of accurate and

omogeneous beliefs. It assumes the existence of different levels

f strategic thinking in the population, and that each level best

esponds to lower levels. The model is built around an anchoring,

on-strategic type: level-0. In this paper, we follow the approach

eveloped by Nagel (1995) and Stahl and Wilson (1995) and

pplied to the auction setting by Crawford and Iriberri (2007) ,

here each type believes everyone else’s type corresponds to

he level immediately below. Formally, level-1 best responds to

evel-0, level-2 best responds to level-1, and so on. 11 

The definition of level-0 is crucial since it anchors the beliefs

nd actions of all other types. Following a common approach in

evel-k models, we assume that level-0 chooses a bid uniformly

andom over all possible bids. 12 As in Crawford and Iriberri (2007) ,
 random level-0 bidder. Thus, we adopted the more common definition of ‘ran- 

om level-0.’ Moreover, note that a truthful level-0 treats public information and 

ommon uncertainty just like a NE player. Therefore, he would seem excessively 

ophisticated for a person who is usually considered “simplistic”. 
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Table 5 

Normal Estimation of CE and Lk models. 

All rounds Round 1 Round 2 Round 3 

χ 1.00 1.00 1.00 1.00 

Cursed AIC 66 ,917 66,921 

Equilibrium BIC 66 ,924 66,942 

LL 33 ,458 33,458 

Level-k L 0 0.22 0.21 0.19 0.15 

L 1 0.75 0.79 0.81 0.84 

L 2 0.00 0.00 0.00 0.01 

Eq 0.03 0.00 0.00 0.00 

AIC 41 ,571 41,583 

BIC 41,605 41,686 

LL 20 ,780 20,776 
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alled Equilibrium (Eq) – consisting of NE bidders. 13 Denote by

 

r 

j and X r j the maximum and minimum realization of subject j ’s

andom variable X r 
j 
. Bidder A ’s bidding function under the level-k

heory is characterized below (again, the analysis for bidder B is

nalogous). 

roposition 3. The bid of bidder A in level-k when r ∈
 1 , . . . , N/ 2 − 1 } is: 

L 0 L 1 L 2 Eq 

U[0 , 200] X r A + E[ X r ∅ ] + E[ X r B ] X 
r 

B + E[ X r ∅ ] + E[ X r A ] if X r A ≥ E[ X r A ] E[ X r ∅ ] + 2 X r A 

X r B + E[ X r ∅ ] + E[ X r A ] if X r A < E[ X r A ] 

When r ∈ { N/ 2 + 1 , . . . , N − 1 } , we replace E[ X r ∅ ] by X r 
Pub 

. When

 = N/ 2 , E[ X r ∅ ] is removed. When r ∈ {0, N } all levels except L 0 bid

ike NE. 

roof. Let r ∈ { 1 , . . . , N/ 2 − 1 } (if r ∈ { N/ 2 + 1 , . . . , N − 1 } then we

eplace E[ X r ∅ ] by X r 
Pub 

and if r = N/ 2 then E[ X r ∅ ] is removed). 

• Level-1. L 0 bids uniformly random on the interval [0, 200]. Let

H(b) = b/ 200 . We can write the utility of a L 1 bidder A as: 

U 

r 
A = ( X 

r 
A + E[ X 

r 
∅ ] + E[ X 

r 
B ] − E[ b r B | b r B ≤ b r A ] ) H(b r A ) 

⇔ U 

r 
A = ( X 

r 
A + E[ X 

r 
∅ ] + E[ X 

r 
B ] ) H(b r A ) −

∫ b r 
A 

0 

b r B h (b r B ) db r B 

Taking the first-order condition with respect to b r 
A 

yields: 

b r A (X 

r 
A ) = X 

r 
A + E[ X 

r 
∅ ] + E[ X 

r 
B ] 

• Level-2. Analogously, we can write the utility of a L 2 bidder A

as: 

U 

r 
A = 

(
X 

r 
A + E[ X 

r 
∅ ] + E[ X 

r 
B − b r B 

∣∣ b r A ≥ b r B ] 
)

Pr (b r A ≥ b r B ) 

Substituting b r 
B 

by the bidding equation of a L 1 bidder B , we

get: 

U 

r 
A = ( X 

r 
A − E[ X 

r 
A ] ) F 

r (b r A − E[ X 

r 
∅ ] − E[ X 

r 
A ]) 

where F r (X r 
A 
) = 

∫ x 
x . . . 

∫ x 
x G (X r 

A 
− x 1 − · · · − x r−1 ) g(x 1 ) . . .

g(x r−1 ) d x 1 . . . d x r−1 . 

This means that a L 2 bidder A wants to win the auction for sure

hen X r 
A 

≥ E[ X r 
A 

] and lose it for sure when X r 
A 

< E[ X r 
A 

] . Therefore

is optimal bid coincides with the maximum bid of a L 1 bidder

 when X r 
A 

≥ E[ X r 
A 

] and with the minimum bid of a L 1 bidder B

hen X r 
A 

< E[ X r 
A 

] . Formally: 

 

r 
A (X 

r 
A ) = 

{
X 

r 

B + E[ X 

r 
∅ ] + E[ X 

r 
A ] if X 

r 
A ≥ E[ X 

r 
A ] 

X 

r 
B + E[ X 

r 
∅ ] + E[ X 

r 
A ] if X 

r 
A < E[ X 

r 
A ] 

nd the result follows. �

It is interesting to note that the bid of L 1 is the same as the

id of a fully cursed subject (χ = 1) . This happens because the

ptimal strategy in a second-price auction is to bid the expected

alue of the good conditional on the information available and

he strategy of the opponent. For both L 1 and χ = 1 , there is no

elationship between the opponent’s bid and his information. It is

herefore optimal in both cases to bid the unconditional expected

alue of the rival’s private information. 

As for the higher levels, remember that L 1 overbids when his

rivate information is below average and underbids when it is

bove average. L 2 ’s best response then consists of corner solutions:

hen L 1 overbids L 2 wants to lose the auction for sure whereas

hen L underbids L wants to win the auction for sure. 
1 2 

13 For level-3, there is an interval of possible bids for each value of private infor- 

ation, making it difficult to identify this type. Also, even though truncating the 

ierarchy might result in not capturing higher levels of sophistication in the data, 

he inclusion of equilibrium players ( Eq , who are more sophisticated than level-3) 

artially addresses that problem. 

b  

e  

l

a

.3. Estimation 

We now estimate these two behavioral models to check how

ell they each fit the data. For both models we perform two

ets of estimations. First, we constrain the parameters to be

he same for all rounds, then we allow the parameters to differ

cross rounds. If the CE and Lk models are robust and capture

he reaction of subjects to all three types of information, the

arameters in the constrained estimation and in all the rounds of

he unconstrained estimations should be similar. Also, since both

ehavioral models predict NE choices for all parameter values

hen there is no private information, they cannot be identified.

herefore we leave rounds 0 and 4 out of the estimation. 

We use the following econometric specification: 

 om 

= b w 

(X om 

) + ε om 

here b om 

is the bid observed in the data for observation o of

ubject m , b w 

(X om 

) is the bid predicted by model w ∈ { CE , Lk } , and

om 

is an error term assumed to be independently distributed and

ollowing the normal distribution N (0, σ ). Therefore, Pr [ b om 

| X om 

] =
f (b om 

− b w 

(X om 

)) , where f ( ·) is the density of a normal distribution

 (0, σ ). 14 For each model we find the parameters that maximize

he log-likelihood of our sample. Since the Lk model assigns

ypes to subjects, we construct the likelihood function per subject

nd then sum all subjects” likelihoods. Therefore, if we have O

bservations per subject, M subjects and L types with proportions

l that sum to one, we get the following log-likelihood function: 

L (π, σ
∣∣ b) = 

M ∑ 

m =1 

log 

( 

L ∑ 

l=1 

πl 

O ∏ 

o=1 

Pr [ b om 

∣∣ X om 

, l] 

) 

e assume there is only one type in the CE model and the bid-

ing function has the level of cursedness χ as the only parameter

see later for a brief discussion of heterogeneous cursed players).

herefore, the log-likelihood function is: 

L (χ, σ
∣∣ b) = 

M ∑ 

m =1 

O ∑ 

o=1 

log 

(
Pr [ b om 

∣∣ X om 

, χ ] 

)
Table 5 displays the estimation results of the two behavioral

odels. The column labeled all rounds reports the findings when

e constrain the parameters to be the same in all rounds. For

ach of the two sets of estimations, we compute two information

riteria: the Akaike information criterion (AIC) and the Bayesian

nformation criterion (BIC). The lower the AIC and BIC values, the

etter the model fits the data. For both models, the unconstrained

stimation is not significantly different than the constrained
14 An alternative estimation strategy was to use a logit model. However, given the 

arge number of actions, many of which were not observed in the data, we ran into 

n empty cell problem. 
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Fig. 4. P.d.f. of deviations from NE in rounds 1, 2 and 3. 
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one under either criterion, which means that both models have

consistent estimates across rounds. 

The best estimate of the CE model is χ = 1 in every round,

which means that subjects in our sample are fully cursed.

This finding follows naturally from the regression analysis of

Section 4.3 , which showed that subjects react less to private infor-

mation than predicted by Nash theory and overbid common uncer-

tainty (higher intercept and smaller slope, just like a χ-cursed sub-

ject). In fact, subjects react even less to private information than a

fully cursed bidder since the slope of the bidding function is less

than 1, but no χ parameter can accommodate such severe under-

reaction to private information. The observed overbidding cannot

be fully captured either since CE predicts an unconditional average

bid equal to NE theory and the data shows aggregate overbidding. 

The estimates of the Lk model are also in agreement with the

estimates of the CE model as 75% of the population or more is L 1 
(the equivalent of fully cursed). The rest are L 0 which are meant to

capture subjects with very low and very high bids. Lk fits the data

better than CE under both the AIC and BIC criteria. This must nec-

essarily be the case in our sample . Indeed, since the best estimate

of the (one-parameter) cursedness is χ = 1 , the (three-parameter)

level-k can do as well by having all subjects as L 1 and weakly

better by having a positive fraction of some other types of subjects

as well. In that respect, the higher dimensionality of Lk plays

strongly in its favor. 15 It is interesting that there are virtually no

‘Equilibrium’ players in the Lk specification. Note also that Lk does

not offer a big improvement over CE. This is because our subjects
15 This is of course not true in general (e.g. when the best estimate of cursedness 

is χ ∈ (0, 1)). Eyster and Rabin (2005) provide an estimation of CE with heteroge- 

neous levels of cursedness. In our experiment this could improve the fit but it is 

unlikely to do so significantly, as the estimated cursedness is already maximal. It 

could capture some heterogeneity of the data but it would still fail to account for 

the aggregate over-bidding. 

r  

u  

c

t

h

verbid on average and neither L 0 nor L 2 subjects (let alone Eq ) can

ccount for this departure. Finally, Crawford and Iriberri (2007) es-

imate these two behavioral models with the data of Avery and

agel (1997) . Since our round 2 is equivalent to their setting, we

an compare the results. In their constant precision specification

the one we are using in our study), they find χ = 0 . 8 for the CE

odel and 94% of L 1 and 6% of L 2 for the Lk model. Our estima-

ions are χ = 1 for CE and 81% of L 1 and 19% of L 0 for Lk, which

re similar (strong cursedness in the CE model and overwhelming

ajority of L 1 players in the Lk model) but not identical. 16 

The results are presented in a more intuitive way in Fig. 4 . It

lots the probability density functions of the deviations from NE

bserved in the data (solid line) and estimated by the CE (dotted

ine) and Lk (dashed line) models. On the x-axis are the deviations

rom NE and on the y-axis are the empirical and estimated prob-

bility density functions. The data is less concentrated around the

ean and has thicker tails due to a more heterogenous bidding

han predicted by the models. The densities of the two behavioral

odels have very similar shapes, which is expected given that L 1 
nd χ = 1 behave identically. The only noticeable difference is the

lightly thicker tails of the Lk model due to the presence of L 0 
ubjects whose bids are, by definition, highly dispersed. 

Overall, both models can parsimoniously explain two important

eatures of the data: overbidding when the realized value of

rivate information is small and under-reaction to increases in

hat information. However, two caveats should be noted. First,

either model can explain the other departures from the theo-

etical predictions, especially departures with respect to common

ncertainty and public information. Indeed, in round 0 (where
16 When Crawford and Iriberri (2007) allow for subject specific precision, the per- 

entage of other types increases. Although this alternative specification has an in- 

eresting econometric motivation, we prefer to stick to the more parsimonious be- 

avioral model. 
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here is no information) subjects bid more than the expected value

f the good. They somehow carry this overbidding– on top of the

inner’s curse– to the rounds with private information and, to a

esser extent, also to round 4 where subjects bid for an item of

nown value. So, although the theories go in the right direction,

ur results suggest that there is still room for improvement in

he understanding of subjects’ reaction to uncertainty and public

nformation, possibly through a combination of behavioral the-

ries. Second, both CE and Lk perform similarly due to the fact

hat, in our auction, the choice of fully cursed and level-1 players

coincide”. However, these identical behaviors are based on widely

ifferent decision processes (ignoring the link between other’s

hoices and their information v. assuming a non-strategic choice

f the rival and best-responding to it). The current experiment

annot disentangle between these two theories but suggests that

 suitably designed variant could potentially determine which

rocess captures best the departures observed in an auction. 

The findings in this section are summarized in the following

esult. 

esult 4. Hypothesis 3 is supported by the data: CE and Lk

ccount for a number of important features of the data. However,

here is heterogeneity, overbidding and under-reaction to private

nformation beyond the winner’s curse that still remain largely

nexplained. 

. Conclusion 

This and our companion paper ( Brocas et al., 2015 ) have intro-

uced a simple and intuitive design of a common value auction

ith two distinctive features: we have varied in a parsimonious

ay the amount of information regarding the value of the good

nd we have considered three types of information and changed

heir relative importance across auctions. Taken together, both

apers allow us to conclude that a significant fraction of subjects

o not fully grasp differences in types of information. In particular,

hey treat private and public information in a similar way. Al-

hough more evidence is needed to assess the importance of this

ehavioral anomaly, the evidence points to a significant departure

hat deserves further theoretical and empirical scrutiny. 

This anomaly has implications in settings beyond common

alue auctions. Just to name a few examples, juries have access to

ublic information (facts revealed by defense attorney and pros-

cutor) and private information (prior knowledge of the case and

ersonal interpretation of the law). Consumers are exposed to pub-

ic messages (advertising) as well as private messages (individual

esearch and pre-purchase tests). Voters obtain news from public

ources (newspapers) and private sources (personal understanding

f the agenda of a candidate). Our experimental evidence suggests

hat suboptimal decisions may occur because individuals do not

ealize that, in strategic contexts, the source of knowledge (public

r private) is key in determining the optimal course of action. 

Finally, some specific findings of this paper raise other ques-

ions that would be interesting to address in future research. First,

he fact that subjects react less to public information than what

ash theory predicts is intriguing. It implies for example that sub-

ects in a common value auction would overbid more if the good

s drawn from a uniform distribution [0, 10] than if it is drawn

rom a uniform distribution [90, 100]. It would be interesting to

heck if the under-reaction to public information is an anchoring

ffect due to our design or if it is indeed a pervasive problem

n common value auctions. Second, common value second-price

uctions with two bidders have the methodological drawback of

eaturing multiple equilibria. The literature (including this paper)

ypically focuses on the symmetric equilibrium. Alternatively, one

ould study a three-bidder version of this game where the Nash
quilibrium is unique and symmetric, so that the comparison

etween empirical and theoretical predictions does not rely on a

potentially problematic) symmetry assumption. 

ppendix A. Instructions 

This is an experiment in group decision making, and you will

e paid for your participation in cash at the end of the experi-

ent. Different participants may earn different amounts. What

ou earn depends partly on your decisions, partly on the decisions

f others, and partly on chance. The entire experiment will take

lace through computer terminals, and all interaction between

articipants will take place through the computers. It is important

hat you not talk or in any way try to communicate with other

articipants during the experiments. 

We will start with a brief instruction period. During the instruc-

ion period, you will be given a complete description of the experi-

ent and will be shown how to use the computers. You must take

 quiz after the instruction period. So it is important that you listen

arefully. If you have any questions during the instruction period,

aise your hand and your question will be answered so everyone

an hear. If any difficulties arise after the experiment has begun,

aise your hand, and an experimenter will come and assist you. 

At the end of the session, you will be paid the sum of what

ou have earned in all matches, plus the show-up fee of $ 5.00.

veryone will be paid in private and you are under no obligation

o tell others how much you earned. 

Your earnings during the experiment are denominated in to-

ens. You start the experiment with an endowment of 300 tokens.

epending on your decisions, you can earn more tokens or lose

ome tokens. At the end of the experiment, we will count the

umber of tokens you have and you will be paid $1.00 for every

0 tokens. So you start the experiment with an endowment of 15

ollars. 

The experiment will consist of 15 matches. In each match,

ou will be paired with one of the other participants in the

xperiment. Since there are participants in today’s session, there

ill be pairs in each match. You are not told the identity of

he participant you are matched with. Your payoff depends only

n your decisions, the decisions of the one participant you are

atched with and on chance. What happens in the other pairs

as no effect on your payoff and vice versa. Your decisions are not

evealed to participants in the other pairs. 

We will now explain how each match proceeds. At the begin-

ing of the match, the computer pairs you with another partici-

ant. Next, the computer randomly assigns with equal probability a

ole to each member as ‘bidder 1’ or ‘bidder 2’. In each match, each

ember of the pair will be asked to bid for one item. The follow-

ng screenshot illustrates how the value of the item is calculated. 

[SCREEN 1] 

You will never see such a screen, but it is useful to understand

he game. In this screen, there are 4 boxes [POINT]. Each box con-

ains a number of tokens which is equally likely to be any integer

rom 0 to 50. The number of tokens in one box is independent

f the number of tokens in the other boxes. To be more precise,

efore each match begins the computer selects, with equal chance,

 number of tokens between 0 and 50 for the first box [POINT];

hen it selects, with equal chance, a number of tokens between

 and 50 for the second box[POINT], and so on until the 4th box

POINT]. The value of the item is the sum of the tokens in all

our boxes. In this example, the value is 64. Both participants

ill bid for this value. Note that given the number of tokens in

ach box varies from 0 to 50, the value of the item is always at

east 0 and at most 200. The number of tokens in each box and

he corresponding value of the item remain the same during the

ntire match. However, this information will not be displayed
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to you all at once. Instead, the information will be revealed

sequentially. 

More precisely, each match is divided into 5 rounds. Partici-

pants keep the same role and pair for all the rounds of the match.

In each round of the match, there is one auction for the whole

item. We now explain how the auction in each round works. 

Round 0 

[SCREEN 2] 

Bidder 1 sees a screen similar to the upper part of the slide

[POINT]. Bidder 2 sees a screen similar to the lower part of the

slide [POINT]. Both bidders see all 4 boxes but they do not see

what is inside any of them. 

Now you submit a bid for the entire item, that is, for the total

number of tokens in all 4 boxes. (We will explain in a minute how

bids are transformed into payoffs). You do not get to see the bid

of the other participant. Instead, you move to round 1. 

Round 1 

[SCREEN 3] 

In round 1, you keep the same role and bid against the same

participant as in round 0. The screens that bidders 1 and 2 see are

similar to the upper and lower part of the slide[POINT]. Bidder 1

sees the number of tokens inside the first box starting from the

left, the underscored box[POINT]. Bidder 2 sees the number of

tokens inside the first box starting from the right, the overscored

box[POINT]. Note that knowing the number of tokens in one box

does not give you any information about the number of tokens in

the other boxes. If you are bidder 1, you know that bidder 2 can

only observe the content of the overscored box [POINT]and cannot

observe the content of the underscored box and the boxes that

are neither underscored nor overscored [POINT]. The analogous

reasoning applies to bidder 2. 

After observing the content of the underscored box, if you are

bidder 1, or the content of the overscored box, if you are bidder

2, you submit a bid for the total number of tokens in all 4 boxes.

You do not get to see the bid of the other participant. Instead, you

move to round 2. 

Round 2 

[SCREEN 4] 

In round 2, you keep the same role and bid against the same

participant as in round 1. The screens that bidders 1 and 2 see are

similar to the upper and lower part of the slide[POINT]. Bidder 1

now sees the number of tokens inside the first two boxes starting

from the left, the two underscored boxes[POINT]. Bidder 2 sees the

number of tokens inside the two boxes starting from the right, the

two overscored boxes[POINT]. Notice that the number of tokens in

the leftmost and rightmost boxes did not change[POINT]. This hap-

pens because, as we explained before, the tokens inside each box

were all drawn at the beginning of the match and do not change

between rounds. They are just sequentially revealed to bidders. 

After observing the content of the open boxes you submit a bid

for the total number of tokens in all 4 boxes. You do not see the

bid of the other participant. Instead, you move to round 3. 

This process of seeing one more box continues round after

round until both bidders have seen the content of all the 4 boxes. 

At the end of round 4, when all bids have been made, the

computer screen displays the total number of tokens in all boxes.

This is the value that both participants were bidding for. Then,

the computer randomly selects with equal probability one of the

5 rounds. For the round selected, payoffs are computed as follows.

The participant who submitted the highest bid in the selected

round wins the total number of tokens in all 4 boxes and pays

the bid of the other participant in that round. This payoff can be

positive (if the tokens in the boxes exceed the bid of the other

participant), zero or negative. This amount is added or subtracted

to the current stock of tokens. The participant who submits the
owest bid pays nothing and obtains nothing; his payoff is zero.

he bids in all the other rounds do not count for the payoffs. If

oth participants submit exactly the same bid, then the computer

andomly chooses the winner with equal probability and computes

he payoffs just like before. 

Remember that in each round you always bid for the tokens in

ll the boxes, including those for which the content is hidden. You

o not have to write the same bid in all rounds of the match. You

an increase or decrease your bid from round to round, if you think

his will increase your payoff. There are only two restrictions in the

ids. First, it has to be an integer number between 0, the minimum

alue if all the boxes have 0 tokens, and 200, the maximum value

f all the boxes have 50 tokens. Second, it cannot exceed your cur-

ent stock of tokens displayed at the beginning of the match. 

When the match is finished, we proceed to the next match. For

he next match, the computer randomly reassigns all participants

o a new pair, a new role as bidder 1 or bidder 2, and randomly

elects the number of tokens to put inside each box. The new

ssignments do not depend in any way on the past decisions of

ny participant including you and are done completely randomly

y the computer. The assignments are independent across pairs,

cross participants and across matches. This second match then

ollows the same rules and payoffs as the first match. Your final

ayoff in the experiment is equal to your stock of tokens in the

nd. Basically, it is equal to your initial stock of tokens plus your

ccumulated payoffs during the experiment. 

This continues for 15 matches, after which the experiment ends.

[SCREENS 5 AND 6] 

These slides summarize the rules of the experiment. 

We will now begin the Practice session and go through one

ractice match to familiarize you with the computer interface

nd the procedures. During the practice match, please do not hit

ny keys until you are asked to, and when you enter information,

lease do exactly as asked. Remember, you are not paid for this

ractice match. At the end of the practice match you will have to

nswer some review questions. 

[AUTHENTICATE CLIENTS] 

Please double click on the icon on your desktop that says

 When the computer prompts you for your name, type your

irst and Last name. Then click SUBMIT and wait for further

nstructions. 

[START GAME] 

[SCREEN 7] 

You now see the first screen of the experiment on your

omputer. It should look similar to this screen. 

[Point to overhead screen as you explain this] 

At the top left of the screen, you see your subject ID [POINT].

lease record that ID in your record sheet. You have been paired

y the computer with one other participant and assigned a role

s bidder 1 or bidder 2, which you can see on the top left of

he screen [POINT]. The participant you are paired with has been

ssigned the opposite role (bidder 2 or bidder 1). The pair as-

ignment and role will remain the same for the entire match. You

an also see on the top left of the screen that you are in round 0

POINT]. 

At this round you cannot see the content of any box. 

If you look at the middle of your screen, you should see ‘Choose

 bid for Round 0’ [POINT]. Please type the day of your birthday

nd press enter. For example, if you were born on March 12, write

2. This is only for the practice match, in the actual experiment

ou can type any integer number between 0 and 200. 

Round 0 is over. We now move to round 1. 

[SCREEN 8] 

You now see the screen of round 1. It should look similar to

his screen. [Point to overhead screen as you explain this] 
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If you are bidder 1, you can see the content of the underscored

ox, while if you are bidder 2 you can see the content of the

verscored box. 

Please type 200 minus the day of your birthday in the field in

ront of ‘Choose a bid for Round 1’ and press enter. 

Round 1 is over. We now move to round 2. 

[SCREEN 9] 

You now see the screen of round 2. It is the same as the

revious rounds, except that both you and the other participant

an see the content of one more box [POINT]. The contents of

he leftmost and rightmost boxes are the same as in the previous

ound [POINT]. This happens because the tokens inside each box

ere all drawn at the beginning of the match. 

Please type the month of your birthday in the field in front of

Choose a bid for Round 2’ and press enter. 

Round 2 is over. We now move to round 3. 

[SCREEN 10] 

You now see the screen of round 3. It is the same as the

revious rounds, except that both you and the other participant

an see the content of one more box. Notice that the two boxes

n the middle are both underscored and overscored [POINT]. This

eans that both you and the other participant can observe their

ontent. Please type 100 + the month of your birthday in front of

Choose a bid for Round 3’. 

Round 3 is over. We now move to round 4. 

[SCREEN 11] 

You now see the screen of round 4. It is the same as the pre-

ious rounds, the only difference is that you can see the content

f one more box [POINT]. Please type the first three digits of the

ear you were born in the field in front of ‘Choose a bid for Round

’ and press enter. 

Round 4 is over. Now the computer will randomly select one

he rounds. 

[SCREEN 12] 

The selected round is highlighted in yellow [POINT]. The partic-

pant with the highest bid will collect this amount [POINT]and pay

he bid of the other participant. The participant with the lowest

id has a payoff of zero in this match [POINT]. 

The bottom part of your screen contains a table summarizing

he results for all matches you have participated in [POINT]. This

s called your history screen. It will be filled out as the experiment

roceeds. It only shows the results from your pair, not the results

rom any of the other pairs. Now click ‘Continue’. The practice

atch is over. Please complete the quiz. Raise your hand if you

ave any question. 

[WAIT for everyone to finish the Quiz] 

Are there any questions before we begin with the paid session?

e will now begin with the 15 paid matches. Please pull out your

ividers. If there are any problems or questions from this point on,

aise your hand and an experimenter will come and assist you. 

[START MATCH 1] 

———————————————————

[After MATCH 15 read:] 

This was the last match of the experiment. Your payoff is

isplayed on your screen. Please record this payoff in your record

heet and remember to CLICK OK after you are done. 
[CLICK ON WRITE OUTPUT] 

Your Total Payoff is this amount plus the show-up fee of $ 5.00.

e will pay each of you in private in the next room in the order

f your Subject ID number. Remember you are under no obligation

o reveal your earnings to the other participants. 

Please put the mouse behind the computer and do not use

ither the mouse or the keyboard. Please remain seated and

eep the dividers pulled out until we call you to be paid. Do not

onverse with the other participants or use your cell phone. Thank

ou for your cooperation. 

Could the person with ID number 0 go to the next room to be

aid. 

[CALL all the participants in sequence by their ID ] 
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