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Abstract

We conduct a laboratory experiment where groups of 4 subjects constrained
to obtain at most one good each, sequentially bid for 3 goods in first and second
price auctions. Subjects learn at the beginning of each auction their valuation for the
good and exit the auction once they have obtained one good. We show that, contrary
to equilibrium predictions, subjects’ bidding behavior is excessively similar across
units and across mechanisms at the aggregate level. We provide two
(complementary) explanations for these departures. One is bounded rationality.
Subjects do not fully comprehend subtle differences between mechanisms. The
other is self-selection. Subjects are very heterogeneous and some of them deviate
more from equilibrium than others. Since deviations take mostly the form of
overbidding, these subjects win the first or second good and exit the auction, leaving
those who play closer to theoretical predictions to bid for the third good. Support
for this hypothesis comes from the documented higher bidding, lower efficiency and
lower profits associated with the first and second unit compared to the third one.

Introduction

Bidding behavior in auctions has long been studied using experimental
methods (see Kagel and Levin [1] for a recent detailed survey). In this paper, we
continue this tradition and study sequential auctions in which bidders fulfill their
needs once they have obtained one good and drop out of the market for subsequent
ones. We may refer to this type of auctions as auctions with capacity constraints
since obtaining a good saturates the capacity of the participant for a time period,
restricting the possibility to bid in an auction for a while, that is, until at least part of
the capacity is freed. In their recent survey, Kwasnica and Sherstyul [2] call them
“multi-unit auctions with single-unit demand”.

Several real-life cases might be mentioned concerning capacity restrictions of
this sort. Construction companies submit bids for building a major infrastructure.
They know about their current cost and potential benefit of being the awardee, but
they also know that there will be more contracts in the future, and that once a
contract is awarded their limited capacity and business size may prevent them from
bidding in other, perhaps more lucrative ones.



Similarly, transportation companies may compete for special transportation
jobs. Companies with a reduced fleet must trade-off the benefit of obtaining the
contract and the opportunity cost of bidding in future ones. In this market,
companies like uShip.com provide the platform in which transportation tasks are
auctioned.

Radio taxi companies face a related allocation situation when a new service
comes along. The receiving center puts a call on the radios of the vehicles. A taxi
driver may decide to accept the service or reject it, hoping that a closer or more
rewarding service will show up soon.

Reverse auctions are also embedded in Customer Response Management
(CRM) software like salesforce, where buyers of raw materials put a requirement in
the web to their registered suppliers, who must post a quote. These companies
supply goods to different clients, so committing production resources to this current
winning bid might hamper the possibility of obtaining a better sale in the future.

Participants in this dynamic assignment of goods understand the inter-
temporal tradeoff between current and future options. The singularity of the
situation is that they have information about the current good but uncertainty about
the future ones, not knowing which type of good will be auctioned next.

The aim of our paper is to study this trade-off in a controlled laboratory
setting given different allocation mechanisms. In particular, we want to determine if
subjects realize that patience may pay off.

Analyzing sequential auctions is not new. In Keser and Olson [3], 8
participants bid sequentially for 4 goods in first-price sealed-bid auctions. The
authors observed diminishing prices as the auction went along, and classified
subjects according to their degree of risk aversion. Salmon and Wilson [4] replicated
the study using an English auction. Patience or “wait-and-see” strategies were also
analyzed under the same experimental rules in Neugebauer and Pezanis-Christou
[5]. Finally, Brosig and Reis [6] studied two consecutive first-price auctions with
two bidders who can undertake only one project each. In this literature, however,
valuations for all goods are known at the outset. Early bids have a strong signaling
component, so the set of all Perfect Bayesian Equilibria is large and difficult to
characterize.

To our knowledge, Leufkens et al. [7-8] are the only existing dynamic auction
experiments where valuations for the second good are drawn after the allocation of
the first good. The authors study a two-good setting with synergies, where the agent
who obtains the first good has an increased valuation for the second good. As a
result, there is an incentive to overbid for the first good and capitalize with the
second. The authors find that subjects face an exposure problem and do not fully
incorporate in their bid the extra value of winning.

Our paper shares the sequential revelation of valuations with Leufkens et al.
[7-8], capturing the idea that bidders are uninformed of the value of future
opportunities when bidding for the current contract. However, we focus on the



opposite inter-temporal trade-off: winning good ¢t prevents subjects from bidding
for good t+1, making the object at t less desirable. In other words, there is an option
value of waiting - very much on the lines of the literature on investment under
uncertainty [9] - which implies that, for a given valuation, bids should be lower and
profits should be higher for goods auctioned early compared to goods auctioned
late.

Formally, the experiment is set with groups of 4 subjects sequentially
bidding for 3 goods, both under the rules of first- and second-price sealed bid
auctions. Valuations are provided to the subjects “one-at-a-time”, and the winner of
a good cannot bid for the remaining one(s). Theory predicts lower bids for earlier
goods due to the standard “option value of waiting” argument and for first-price
auctions due to the obvious effect of higher payments conditional on bids.

Not surprisingly in light of the existing literature, we find that subjects in our
experiment deviate from the theoretical predictions, with an overall tendency to
overbid. Subjects also exhibit a similar bidding behavior across goods and
mechanisms. In our setting, this means that overbidding is stronger in first- than in
second-price auctions ([10-11], for example). Overbidding is also stronger in earlier
than in later goods.

The similarity in bidding across auctions suggests an imperfect
understanding of fine distinctions across mechanisms. The similarity in bidding
across goods can be also due to an imperfect understanding. However, it may be the
result of a subtler dynamic self-selection effect. Indeed, subjects with a tendency to
overbid are likely to win early goods (1 and 2) and exit the auction, leaving only
those who play close to equilibrium or underbid competing for the last good (3). If
this hypothesis is correct, we should then observe that subjects who typically win
good 3 bid closer to equilibrium for all goods than subjects who typically win goods
1 and 2, and also make higher profits. Overall, when competing against irrational
bidders, patience (that is, waiting until the overbidders get a good and leave the
auction) pays off.1

Interestingly, our results support the self-selection hypothesis. Indeed, for
each type of auction we divide subjects into those who often win goods 1 and 2
(early winners) and those often win good 3 or none of them (late winners). An
analysis of the bidding behavior suggests that early winners overbid substantially
more than late winners not only for goods 1 and 2 (which explains why they win
them so often) but also for good 3. We also show that the average efficiency is much
larger for good 3 than for goods 1 and 2, mostly because of a change in the
composition of the population: irrational bidders (who overbid and “steal” the good
despite their not having the highest valuation) obtain goods 1 and 2 and leave the

1 This selection effect is related but different from that in Casari, Ham and Kagel [12], where
subjects have an initial endowment and those with financially poor decisions go bankrupt and are
forced to leave the auction. Our selection is more directed. In each round, two bidders out of four win
goods 1 and 2. They exit and cannot bid for good 3.



subjects who bid closest to equilibrium compete for good 3. In other words, even
though early winners also overbid whenever they reach good 3, the efficiency is
high simply because they rarely reach good 3. Finally, the same change in the
composition of the population implies that patience pays off: late winners obtain
substantially higher profits than early winners and gains are larger in the last good
than in the first two, even though the theoretical prediction is the opposite.

Finally, it is interesting to notice that a substantial fraction of irrational
overbidders remain in the auction after the allocation of the first good, as witnessed
by the remarkably similar levels of high overbidding, low efficiency and low payoffs
in goods 1 and 2. In other words, removing the 25% of subjects who win good 1 is
not enough to significantly reduce the departures from equilibrium. Efficiency is
significantly improved and overbidding significantly reduced only after 50% of
subjects have left the auction.

The paper is organized as follows. In Section II, we develop the theory of
dynamic bidding in first- and second-price auctions. In Section III, we describe the
experimental design. In Section IV, we perform an aggregate analysis and study the
bidding functions, efficiency and payoffs by good and mechanism. In Section V, we
conduct a cluster analysis and test our self-selection hypothesis to explain the
differences in bidding, efficiency and profits across goods. In Section VI, we provide
some concluding comments. Proofs and instructions are relegated to the appendix.

Theory

Consider the following auction setting. There are T + 1 risk-neutral bidders
and T periods. In period 1, each bidder i learns his valuation for the good to be
auctioned in that period. We assume that valuations are independently drawn from
the distribution G(.) with support [v, ¥]. Each bidder i simultaneously submits a

sealed-bid bi! R and the good is allocated according to the rules of mechanism Me
{F, S}, where F is a first-price sealed bid auction with no reserve price (highest
bidder wins and pays his bid) and S is a second-price sealed-bid auction with no
reserve price (highest bidder wins and pays the second highest bid). The winner of
the auction obtains the good and exits the auction. The T losers move to period 2
where new valuations are drawn for those bidders (independently both across
bidders and across periods) from the same distribution G(.) and a new auction takes
place under the same mechanism (F or S) as the previous one. The process
continues until period T, the last period, where valuations are drawn for the two
remaining bidders who then bid for the last remaining good.

This dynamic auction has two characteristics that we want to emphasize.
First, each bidder is interested in at most one good: once they have won a good, they
exit the auction and the game ends for them. This occurs in practice when the
opportunity cost of obtaining a second good is prohibitively high. Second, bidder i’s
valuation for good t+1 is unknown in period t. In terms of the examples mentioned
in the introduction, one can think of the owner of one truck, one taxi or one



construction crew who learns and bids for jobs as they appear. Once a job has been
secured, he does not have the means to bid for a second one.

Propositions 1 and 2 characterize the symmetric Nash equilibrium of the
game for bidderi (€{1,..., T+ 1}) inperiodt(€{1,..., T}), under the first-
price (F) and the second-price (S) auction mechanisms, respectively (proofs can be
found in Appendix A).

Proposition 1 In a first-price auction (F), the unique symmetric equilibrium
bidding function of bidder I with valuation v; in period t, b:f(v;), and his equilibrium
utility, uFic(v;), are:

j:i G(s)T+1-tgs

bt (W) = v = — Vin (1)
and

ub,(vy) = f:i G(s)T*t1 tds + V£, (2)
where

Vi, = f: G(v)dv; — fj Gw) Ty, (3)

Proposition 2 In a second-price auction (S), the unique symmetric
equilibrium bidding function of bidder i in period t, bi(v;), and his equilibrium
utility, uSic (v;), are:

bP(w) = v =V, and ui(v) = [[' G ds + VS, (4)
where
Vts+1 = f;G(vi)dvi - f;G(Ui)TH_thi (5)

The results are extensions of the standard one-shot first-price and second-
price sealed bid auctions with no reserve price. Indeed, in the first-price auction, we
can interpret V¥ as the value for a bidder at period t of not winning the current
auction and, instead, moving to period t+1. In the standard auction, this is nil, which
is why the value of not winning the auction in the last period (T), V41, is zero. At
every other period t (< T), V¥t is positive and larger the greater the number of
periods left (VF: > VFw1). Notice also that V¥ is constant, reflecting the fact that at
period t bidder i does not know his future valuations.

Seen under this light, the equilibrium bid in the first-price auction at period t,
b#(vi), takes a familiar form. The first two terms correspond to the static
equilibrium bid when the bidder faces T+1-t rivals, and the last term reflects the
opportunity cost of winning. In other words, bidder i shades his bid relative to his
valuation for two reasons: first to optimize the standard trade-off between
probability of winning and net gain conditional on winning, and second to reflect the
positive value of moving to period t+1 and participating in a new auction. The
equilibrium utility at period t, uif(v;), is also familiar. It simply corresponds to the



standard expected utility of a bidder in a first-price auction against T+1-t rivals to
which we add V¥:.;, the value of moving to the next period.?

The analysis of the second-price auction is analogous. If in a symmetric static
equilibrium subjects bid their valuation, in our problem they decrease that bid by
VS¢+1, the option value of moving to t+1. As in the one-shot auctions, the expected
payoff of bidders in each period is identical across mechanisms (u;f(vi)= ui’(vi)) and
so is the expected value of moving to the next period (V¥ i1 = VS:1). Notice also from
Propositions 1 and 2 that the utility in period ¢ can be rewritten as:

uf(v) = uf () = J} Gw)dv; — [} G(s)T*174ds, (6)

which immediately implies that uif(vi) > uie+1F(vi) for all t and G(.): as we
move from one period to the next, the expected utility of a subject decreases
because he faces fewer options to obtain one good.

The analysis in this section assumes no reserve price, which we know is
suboptimal from the seller’s viewpoint. Determining the equilibrium with optimal
reserve price poses no extra difficulty. Remember, however, that the objective is not
to find optimal mechanisms but to build a simple framework that we can export to
the laboratory. We therefore opted for an environment with no reserve price.

Finally, suppose that a subject with valuation v; wins the auction at date t. His
utility in the first-price auction is then v; — bf (v;) (which, by the equivalence of the
mechanisms, is also equal to his expected utility in the second-price auction). From
an ex-ante perspective, E[ul""], the expected payoff of the winner at t is:

L wi=bF )G w)TH =g (vp)dv;

f; Gw)T*H=tg(vydv;

E[uf™] = (7)

Notice that E[ul™*] > E[ul*]. The expected payoff of the winner decreases
over periods for two reasons. First, because bids increase with t and therefore the
net gain of the winner decreases with t. Second, because as t increases, the number
of bidders decreases. By the largest order-statistics, this means that the distribution
of the highest valuation (which in equilibrium is the valuation of the winner) shifts
towards lower values.

Before describing the experimental environment, we develop the simple
numerical example that will be used in our experiment.

Example 1 Suppose that v =30,7=90and T = 3, we get:
VF; = V5= 18; VFy = VS,= 15; VF3=VS3 = 10; VFy=V5,=0.

bif(vi) =2 v; — =5 baF(vi) = 2 v;; bs(v) = v; + 15.

2 Indeed, since all bidders at period t decrease their bid by V¥:.; compared to a static auction
and there is no reserve price, the winner’s payoff is increased by that amount and the losers’ payoffis
also increased by that amount (the value of going to the next stage).



b1S(vi) = v; — 15; b2S(vi) = v; — 10; bsS(vy) = v;.

1 (vl 30) 1 (v;—30)3

uif(vi) =uid(vy) == 60 +s —

;uzf(vi) =u2d(vi) = —60 +3

P

usF(vi) = usS(v) = l%_

E[uy™ = 27; E[uy™)] = 25; E[u}™] = 20.

Experimental design and procedures

We conducted 4 sessions with 12 subjects and 2 sessions with 16 subjects for
a total of 80 participants. All sessions were held at a computer lab in the Vicalvaro
Campus of the Universidad Rey Juan Carlos (UR]C) in Madrid (Spain). Subjects were
recruited via email after posting a message on the university website calling for
participation on a seminar about auctions but without any notification neither that
the experiment was going to be held nor that they were going to get paid. Those who
showed up were informed about the experiment and were given the option to
withdraw. All decided to participate.

In each session, subjects had to bid on 8 rounds according to the rules of a
first-price (F) or a second-price (S) auction. To control for order effects, in 3
sessions subjects started with 4 rounds of F followed by 4 rounds of S whereas in
the other 3 sessions the order was reversed.

At the beginning of each round, subjects were randomly and anonymously
matched into groups of 4. Subject knew about the procedures but did not know the
identity of the subjects they were matched with.

For each group and each round, the auction consisted in the allocation of 3
goods to the 4 subjects in the group, with 3 subjects obtaining one good and the
other subject obtaining none. The allocation mechanism followed closely the
procedure described in Section II. When the first good was auctioned (from now on
G1), all 4 subjects in the group received a random valuation for that good (and not
for the other two to come). After sealed bidding, G1 was assigned to the highest
bidder and the awarded price was the highest bid (F) or second highest bid (S),
depending on the mechanism being used. The winner of the auction could not bid
anymore in that round. Valuations were then drawn for the second good (from now
on G2) for the remaining 3 subjects. Once again, G2 was awarded according to the
same mechanism (F or S) and the winner was withdrawn for the round. Finally, for
the third good (from now on G3), the last one, only two subjects remained. They
both bid for the good and one got it while the other finished the round with no
good.3

The valuations for each good in each round were denominated in tokens and
randomly drawn from a uniform distribution in [30,90]. Bids were constrained to be

3 So, within one particular round, all three goods were allocated using the same mechanism
(first- or second-price auction) but with different number of bidders (4, 3 or 2).



in the range (0,150], rounded to 2 decimal places. For each good in each round, the
payoff of the winner was value minus own bid (F) or value minus second highest bid
(S)- The profit of the loser(s) and the subject(s) not bidding (i.e., those who won a
previous good in that round) was 0.

At the end of the session, the subjects were paid according to one round that
was chosen at random by throwing three coins and showing the resulting sequence
of heads and tails to the participants. The payoff was converted to euros at a ratio of
1 euro per 4 tokens. Subjects also earned a show-up fee of 2 euros.

The timing of the experiment was the following. First, the experimenter read
the instructions (see Appendix B for a sample copy of the translation to English)
showing sample screenshots in an overhead projector. Then, subjects took a short
quiz on paper to make sure that each one had completely understood the
instructions. After that, subjects went through one practice round that did not count
for the final payoff and then they participated in the 8 paid rounds of the
experiment. Finally, the subjects were paid in cash and in private their total
earnings. Sessions averaged 75 minutes and subjects’ earnings averaged 5.6 euros,
which is admittedly low for the standards in economics experiments.*

For each round and group, 9 bids were submitted: 4 bids for G1, 3 for G2 and
2 for G3. Since there were 80 participants in the experiment, there were a total of 20
groups, each playing 8 rounds. The total number of bids was 640 for G1, 480 for G2
and 320 for G3, of which half corresponded to mechanism F and the other half to S.
The experiment was programmed and conducted with the software z-Tree [13].

Ethics Statement

The experiment falls in the category of non-medical behavioral experiments
in social sciences. It was run with IRB approval from USC (# UP-08-00052) and
consent of the ethical committee of URJC.

Aggregate results

Summary statistics

We first provide indicators that summarize the main features of the
experiment, looking at goods and mechanisms separately.

The first indicator relates to the efficiency of the auctions (Table 1), defined
as the percentage of times that the good is allocated to the subject with the highest
valuation. The efficiency is similar for G1 and G2 and increases substantially for G3.
S auctions are generally more efficient, although it is surprising to see that the
efficiency for G2 is lowest. The efficiency for F auctions is always increasing. Note
that an increase in efficiency over auctions can be partly attributed to the decrease
in the number of bidders (for instance, random allocation would predict efficiencies

4 The two reasons for the low payment were a low conversion rate and a significant
overbidding.



of 25%, 33% and 50% in G1, G2 and G3). However, the 90% allocation efficiency of
G3 is remarkably high. As we will see all along the paper, differences across goods
are partly due to the endogenous “exit” (through winning) of subjects.

Table 1. Average efficiency and response times

Good EFFICIENCY (percentage) RESPONSE TIMES (seconds)

FIRST SECOND Total FIRST SECOND Total
G1 62.5 71.3 66.9 19.8 21.3 20.6
G2 68.8 62.5 65.6 14.6 14.8 14.7
G3 87.5 93.8 90.6 14.8 15.0 14.9
Overall 72.9 75.8 74.4 17.0 17.7 17.4

The second indicator relates to the average time spent by the subjects to
place their bids. They are slower at the beginning. We conjecture this is the case
because the decision problem is more complex in the presence of a higher number
of rivals and/or because subjects take relatively more time to choose the whole
strategy (at the beginning of the round) than to implement their choices (as the
round proceeds). Unfortunately, our data does not allow distinguishing between
these two hypotheses.

The third indicator shows the payoffs obtained by the winner in each
mechanism and for each good, defined as the average valuation minus bid (F) or
valuation minus second highest bid (S) of the winner (Table 2). It also shows the
theoretical prediction, as described in Example 1. Negative empirical values indicate
paying a price over one’s own value when winning.> Differences from theory occur
for two main reasons. First, overbidding results in smaller gains conditional on
winning. Second, it may also imply stealing the good, that is, winning when another
subject has a higher valuation. This means a non-zero rather than zero payoff for
that subject but an overall loss in surplus.

5 We did not ask subjects with negative payoffs to pay money back. Limited liability may
have had an impact on the behavior of some subjects, although we conjecture that a small one.



Table 2. Average payoff of winner in tokens

FIRST SECOND Total
Theory 27.0 27.0 27.0
G1 Experiment -0.9 10.7 4.9
Std. Error 1.7 2.0 1.4
Theory 25.0 25.0 25.0
G2 Experiment -3.7 10.3 3.3
Std. Error 2.1 1.7 1.4
Theory 20.0 20.0 20.0
G3 Experiment 1.8 23.8 12.8
Std. Error 1.3 1.8 1.4
Theory 24.0 24 24.0
Overall | Experiment -0.9 14.9 7.0
Std. Error 1.0 1.1 0.8

There is a high dispersion in payoffs in both auctions. We also notice large
payoffs differences between mechanisms with substantial profits in S (although well
below equilibrium in G1 and G2) and profits close to zero in F, despite the identical
theoretical predictions. A possible explanation is that if only the winner overbids, he
will incur in losses in F but not in S, where the price is determined by the second
highest bid. In other words, irrationality of a fraction of subjects is likely to be more
costly in F than in S. Last and perhaps most interestingly, payoffs increase over
goods (especially between G2 and G3). This is in sharp contrast with the theoretical
predictions, where the increasing bids and decreasing number of participants over
goods imply decreasing expected profits of the winner.® As we develop below, the
composition of subjects in G3 is different, which may be responsible for this effect.

Aggregate bidding functions

An analysis of interest consists in determining the empirical bidding
behavior as a function of the valuation drawn by the subject.

For the rest of the analysis, we refer to “overbid” as the difference between
the experimental bid and the (unique, symmetric) equilibrium bid predicted by
theory (Nash). Positive values indicate overbidding and negative values
underbidding. Bidding is studied by comparing theoretical predictions and
experimental behavior at the aggregate level

Figure S1 describes bidding as a function of valuation. From left to right, the
first graph includes the six theoretical bidding functions (BF) derived in Example 1
of Section II (goods G1, G2, G3 under mechanisms F and S). Note that the
equilibrium bidding functions are linear in valuation because the distribution is
uniform. The second graph shows the empirical bidding functions. The X-axis

6 As we discussed above, with fewer competitors the likelihood of winning and expected
payoff of each bidder is higher. However, the expected valuation of the highest bidder is lower and so
is his expected profit conditional on being the winner.
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represents valuations. To smooth out the empirical functions, we group valuations
in bins of 5 units, starting at the minimum of 30 and ending at the maximum of 90
(so 30 to 35, 35.01 to 40, etc.). The Y-axis shows the average bids that correspond to
all the valuations included in that bin. The third graph depicts the regression-based
experimental bidding functions. Since the theoretical bidding function is linear, we

use the following OLS regression to estimate the best fit of the empirical bidding
functions:

bgi]m = ,80 + ﬁlvgim + Sém (8)

where i denotes the individual, g €{G1,G2,G3} the good and m &{F,S} the
allocation mechanism. This estimate can then be compared to the theoretical ones.
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5 50 55 60 65 70 75 80 85 90 32.5 37.5 425 47.5 52.5 57.5 62.5 6.5 725 77.5 8.5 87.

Value Value

Value

w—FIRST - G2

SECOND - G2

FIRST - G3
SECOND - G3

FIRST - G1
SECOND - G1

w—FIRST - G2
++22 SECOND - G2

FIRST - G3
SECOND - G3

FIRST - G1
SECOND - G1

——FIRST - G2 FIRST - G3
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Figure S1. Bidding functions

Table 3 below includes the slopes and intercepts (at the minimum valuation
of v = 30) of the theory and the OLS regression with their corresponding standard
errors. It also includes the results of a t-test of comparison between the two.

Table 3. Comparison of bidding functions

FIRST - G1 FIRST - G2 FIRST - G3 SECOND - G1 | SECOND-G2 | SECOND - G3

Theory 0.75 0.67 0.50 1.00 1.00 1.00

SLOPE Experiment 0.93* 0.95* 0.92* 1.00 0.93 0.84f
Std. Error 0.04 0.03 0.04 0.06 0.04 0.05

Theory 15.00 20.00 30.00 15.00 20.00 30.00

?:::EC;:(;T Experiment 25.79* 28.53* 29.19 30.36* 33.15* 36.16*
B Std. Error 1.34 1.14 1.43 1.94 1.26 1.89

* significantly higher than theory at 5% level;

t significantly lower than theory at 5% level.

Graphically, the theoretical bidding behavior shows differences between
goods and mechanisms (lower bids in earlier goods and F auctions) whereas the

aggregate experimental functions look similar across goods and mechanisms. This is
consistent with the winner’s payoff data: the higher relative overbidding in F and in
G1-G2 results in lower profits in those treatments.
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Our test of comparison between theory and data corroborates those findings.
There is consistent overbidding as witnessed by the higher empirical intercept in 5
out of 6 cases. Subjects are also more responsive to changes in valuation than
predicted by theory in F, where all the empirical slopes are above 0.9 and the
theoretical are between 0.5 and 0.75. This is not the case in S, where slopes are not
significantly different from theory in G1 and G2 and smaller than theory in G3. More
generally, both slopes and intercepts are more similar across mechanisms and
goods than predicted by theory.

Overbidding

In order to deepen our understanding of the differences between theoretical
and empirical bidding behavior, we represent information using boxplots. Figure S2
shows a boxplot per mechanism and good, with the box height indicating the
interquartile range (q3-q1) and the line in the middle of the box illustrating the
median (q2). The whiskers’ edges indicate maximums and minimums. For
comparative purposes, the graph also includes the overall range (max - min) and
the overall interquartile range (max q3 - min q1). Finally, the notches indicate the
95% confidence intervals on the median and are connected with straight lines to
ease the comparison on central tendencies across goods and types of auctions.

Boxplots of (Experiment-Nash)

O3qgbox
O2qbox

---max =124

-—-maxq3 =23
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==/ERO LINE

—lower notch

---minql =-3

------------------------------------------- ---min =-44
A vy vy
Ry, sy, sy, g, o, g

Gy Gy Gy s, Prp s,
/(71 /tye /03

Figure S2. Boxplots of average overbids
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From the boxplot, we notice an overbidding tendency that diminishes over
goods. This is in line with the results in the previous subsection, where we showed
that the empirical bidding strategies are similar across goods whereas the
theoretical strategies are increasing across goods. Interestingly, the median bid for
G3 in S is right on the equilibrium. Table 4 with the statistical comparison of
medians confirms these findings: there is decreased overbidding across goods both
inF(1=2>3asshowninrow 1)andin$ (4 >5 > 6 as shown in row 2). The
tendency to overbid is also greater in F than in S for G2 and G3 (row 3).

Table 4. Comparison of medians of the bidding functions

Across goods (FIRST) 1=2 | 1>3 | 2>3
Across goods (SECOND) 4>5 14>6 | 5>6
Across mechanisms (G1, G2, G3) 1=4 | 2>5 | 3>6

This analysis reinforces the result of consistent overbidding for all
valuations, mechanisms and goods, except for G3 in S . More interestingly, within a
good, overbidding increases significantly with valuation in F (reaching a median
overbid of 28 units for the highest valuation bin) but it is remarkably constant in S
(Figure S3). Again, the result is consistent with the findings in the section that
includes the aggregate bidding functions, which emphasized that bids are
excessively sensitive to valuation in F (above 0.90 when the theory predicts 0.50 to
0.75). By contrast, in S a one-unit increase in valuation translates into an almost
one-unit increase in bid, just like the theory predicts. For the case of G3 in S, the
median bidding is remarkably close to Nash in all valuation bins.
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Figure S3. Boxplots of overbids per good and mechanism

Overall, the aggregate analysis suggests that bids are sensitive to valuations
(excessively in the case of F) but, contrary to the theory, they are insensitive to
differences in mechanisms (F vs. S) and goods (G1 vs. G2 vs. G3). Behavior is highly
heterogeneous across subjects, with large dispersion in bids and significant
overbidding in 5 out of 6 cases. The similarities in bids across mechanisms are
roughly in line with the existing research in experimental auctions. Heterogeneity,
however, raises an interesting selection problem in our setting: since winners of G1
and G2 do not participate in G3, the differences in departures from theory observed
across goods may be due to differences in the composition of the bidding population.
We will study this novel question in detail in the upcoming sections, but first we
want to analyze the empirical payoffs obtained by our subjects.

Payoffs

The methodology to compare theoretical and experimental payoff functions
(PF) is the same as the one followed to analyze bidding functions. We are interested
in finding the payoff obtained by the winner of the auction, who in theory is also the
highest valuation subject but in practice may not. The first graph of Figure S4
represents the theoretical net payoff of the winner (value minus own bid for F and
value minus expected second-highest bid for S which, as we know from the theory
section, are identical). The graph is therefore an affine transformation of the
theoretical bidding function in F shown previously (v;—bf (v;) instead of only
bf (v;)), so it is also linear in valuation. The second graph shows the empirical
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payoffs. In the X-axis, valuations are grouped in bins of 5 once again’. In the Y-axis is
the average net payoff of winners with valuations in that bin. The third graph

includes a linear OLS regression to estimate the best fit of the winner’s payoff
function:

Payoff

i i i
Tgm = Qg + A Vgm + Ngm

f
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Figure S4. Payoff functions
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It is important to notice the censored data aspect of the information reported
compared to the bidding data presented previously, since we now only consider the
values and bids of the highest bidder.

As before, we also present a table with slopes and intercepts (at v = 30) of the
theory and the OLS regression with their corresponding standard errors (Table 5).
It also shows the results of a t-test of comparison between the two.

Table 5. Comparison of payoff functions

FIRST - G1 FIRST - G2 FIRST - G3 SECOND - G1 | SECOND-G2 | SECOND - G3

Theory 0.25 0.33 0.50 0.25 0.33 0.50

SLOPE Experiment 0.13f 0.03f 0.121 0.05t 0.00f 0.56
Std. Error 0.03 0.03 0.03 0.07 0.09 0.08

Theory 15.00 10.00 0.00 15.00 10.00 0.00

?:EEEC;:(ST Experiment -4.68t -1.51f -2.56 9.40t 11.15 -6.581
B Std. Error 1.11 0.91 1.18 2.47 2.98 2.68

tsignificantly lower than theory at 5% level

due to the higher number of observations per bin but the OLS regressions and the comparisons

7 Since the functions are not too smooth, we also performed the same analysis with bins of
10. Few of these payoffs will correspond to low valuations, since for those valuations subjects are
highly unlikely to win the auction. As anticipated, the payoff functions with bins of 10 were smoother

theory vs. data were similar (results omitted for brevity but available upon request). We keep the
results with bins of 5 to be coherent with the analysis performed in the previous sections.




16

Theory and data are vastly different in 5 out of 6 cases. In F, the payoffs of the
winner are not far from zero and largely unresponsive to valuation, especially for
G2. This is consistent with overbidding being high and increasing in valuation. Even
subjects with valuations close to 7 make very small profits. Differences in payoffs
functions across goods are also not significant. The picture is somewhat different for
G1 and G2 in S. Payoffs are higher, though still below equilibrium predictions and
similar for all valuations rather than increasing. Finally and in contrast with all the
other cases, the winner’s payoffs for G3 in S is remarkably close to theory, with
empirical intercept and slope close to 0 and 0.5 respectively.

Cluster Analysis

Framework and basic statistics

The aggregate analysis shows overbidding, with a diminishing trend across
goods. Bidding reaches behavior close to theory only for G3 in S. There are (at least)
two possible explanations for this trend:

* Hypothesis 1: Bounded rationality. Subjects do not realize subtle
differences between mechanisms and goods, and choose the same
bidding strategy during the entire experiment.

* Hypothesis 2: Self-selection. Some subjects deviate more from
equilibrium behavior than others. Since deviations take mostly the
form of overbidding, these subjects win goods early in the round,
leaving those who play closer to theory to bid for G3.

While Hypothesis 1 is standard in experimental auction models, Hypothesis 2
is more novel. There are indications of both effects in the aggregate analysis. On the
one hand, the overall bidding behavior is similar between F and S for all goods. This
suggests that subjects have difficulties differentiating between the two mechanisms,
consistent with Hypothesis 1. On the other hand, behavior is closer to theory and
efficiency is significantly higher in G3 than in G1 and G2. This suggests a relatively
more rational and homogeneous behavior for the last good, consistent with
Hypothesis 2.

If the hypothesis of self-selection holds true, we should observe that subjects
who often obtain G1 or G2 overbid more than those who obtain G3 or do not obtain
any good. This will partly happen by construction in G1 and G2. More interestingly,
it should also occur in G3.

To study this issue we cluster subjects by the proportion of goods they obtain
“early” vs. “late or never” in the round, and analyze their behavior to determine if
their bidding strategies are different. More precisely, we define two attributes for
each subject: “F3+0” is the percentage of rounds in which the subject has
participated in G3 under F (either obtaining it -3- or not -0-) and “S3+0” is the
percentage of times in which he has participated in G3 under S. Because our subjects
play each mechanism 4 times, the percentages are 0, 25, 50, 75 or 100.
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We then cluster the subjects based on these two dimensions using K-means,
a clustering method that partitions the observations (here subjects) in K clusters
and in which each observation belongs to the cluster with the nearest mean.
According to the self-selection hypothesis, we expect two main groups. Subjects who
often win G1 or G2 both in F and S, which we call EARLY-EARLY or EE. Subjects who
often win G3 or do not win any good both in F and S, which we call LATE-LATE or
LL. There might be also some unique bidding behaviors, with aggressive bidding and
therefore high chances of early winning only in F (EARLY-LATE or EL) or only in S
(LATE-EARLY or LE). A 4-means cluster seems therefore a reasonable option.?

Figure S5 depicts the two-dimensional distribution of subjects, grouped in 4
clusters (the size of each circle and the number inside represent the number of
subjects). Notice that our method imposes the number of clusters but not the way in
which subjects should be grouped with each other. So, subjects need not be
clustered necessarily according to the EE, EL, LE, LL categories described above. It
turns out, however, that this is how the model naturally classifies our subjects.

Bubble Plot of S3+0 vs F3+0 Bubble Plot of S3+0 vs F3+0
Bubble size: FREQ Bubble size: FREQ
100% 1 CLUSTER aoos CLUSTER
EE EE
EL EL
LE LE
7% 3 7 © 75% 14 m
Z s 1 2 i
v v
2% 6 6 1 . 15
0% 2
0%
% 2% 50% 75% 100% 0% 5% 50% 75% 100%

F3+0 F3+0

Figure S5. Clusters

The first thing to notice is that our clustering model puts in the L category the
subjects who reach G3 exactly 50% of the time. Then, of the 80 participants, 41
subjects (51%) are LL, 10 subjects (13%) are EE, 15 subjects (19%) are LE, and 14
subjects (17%) are EL.? Table 6 summarizes the percentage of goods obtained by
subjects in each cluster and their average number of bids. Notice in particular that

subjects who obtain the good late or never (L) bid on average 38% more often than
those who obtain it early (E).

8 We tried also to cluster subjects in 2 or 3 groups, but the results were not as sharp and they
did not lend to a clean test of our hypotheses.

9 This is not very different from what would occur if all subjects played the equilibrium

strategies. Indeed, given our (endogenous) definition of clusters, we would statistically obtain 47% of
LL, 10% of EE, 21% of EL and 21% of LE.



18

Table 6. Percentage of goods obtained per cluster and summary statistics

EARLY - EARLY EARLY - LATE LATE - EARLY LATE - LATE
FIRST SECOND FIRST SECOND FIRST | SECOND FIRST | SECOND Total
(E) (E) (E) (L) (L) (E) (L) (L)
Goods 1+2 82.5% 82.5% 83.9% 28.6% 36.7% 78.3% 35.4% 39.0% 50.0%
Goods 3+0 17.5% 17.5% 16.1% 71.4% 63.3% 21.7% 64.6% 61.0% 50.0%
Avg. # bids 7.1 7.2 6.9 10.5 9.7
# Subjects 10 14 15 41 80
Overbidding

Given this grouping method, the first step in the analysis is to study bidding
behavior across clusters. If all subjects in the experiment follow similar strategies
(equilibrium or otherwise) then subjects who win early goods often are simply
those who happened to get the more favorable draws of valuation. By contrast, if
self-selection and bid heterogeneity is present, early (late) winners are subjects who
bid more (less) aggressively. Table 7 presents the average overbidding in each good
and mechanism separated by cluster.

Table 7. Overbid per cluster

Overbid (Empirical - Nash)

Good EARLY - EARLY EARLY - LATE LATE - EARLY LATE - LATE Total

FIRST | SECOND | FIRST | SECOND | FIRST | SECOND | FIRST | SECOND | FIRST | SECOND ALL

(E) (E) (E) (L) (L) (E) (L) (L)

1 29.8 26.6 15.7 6.9 13.2 19.0 14.6 14.1 17.2 14.5 15.9
2 31.9 15.7 20.7 5.5 10.9 14.6 16.0 10.9 18.0 11.2 14.6
3 24.4 14.8 18.9 -3.8 9.7 5.4 11.0 1.2 12.6 0.6 6.3
Avg. 30.0 21.7 17.6 3.5 11.5 159 14.2 9.7 16.5 10.3 13.1

The average overbidding of an early winner ranges from 15.9 to 30.0
whereas that of a late winner is between 3.5 and 14.2. Overall and consistent with
Hypothesis 2, overbidding is more than twice as high for EE than for LL both in F
and in S. It is also striking that EL subjects are closest to theory in S but depart
substantially in F.

Generally, overbidding decreases across goods, which again is consistent

with Hypothesis 2 regarding the change in the composition of the population across
goods. Interestingly, the decrease in overbidding is most pronounced between the
second and third good, suggesting that the self-selection effect is still present after
removing the 25% of subjects who substantially overbid and win the first good.
Finally, notice that the difference in overbidding between EE and LL is significant
not just on average but also on a good by good basis. In particular, an EE who
reaches G3 will overbid about 13 tokens more than an LL who reaches G3. This
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means that overbidding is truly a characteristic of the individual and not an artifact
of our classification.1? Similar tendencies are observed with EL and LE.

Efficiency

The substantial overbidding of a large fraction of the population for G1 and

G2 (the “early” subjects) may hamper the efficiency of the mechanisms. Table 8

shows the allocation efficiency in F and S. It represents for each cluster whether the
bidder with the highest valuation effectively won the auction (Same) or not (Other),

in which case it also states the cluster type of the “stealer”. Columns are added to

summarize efficiency across goods.

Table 8. Efficiency analysis

WINNER IN

WINNER IN EXPERIMENT

Same Other Same | Other
THEORY 0, 0
FIRST | eff) [LL [ LE | L | BE | 0 Eff- | SECOND | ey ML T LE [ BL [ BE | 2 EfF
LL 18 4 3 6 8 46% 31 4 2 1 8 67%
LE EOOD 1 9 3 1 3 1 53% EOOD 1 16 0 2 0 0 89%
EL 16 1 0 0 0 94% 4 3 1 0 0 50%
639 719
EE % 7 0 0 0 0 100% % 6 1 0 0 1 75%
LL GOOD 2 24 4 2 6 3 62% GOOD 2 15 5 5 2 7 44%
LE - 7 2 0 1 3 54% _ 17 1 0 1 0 89%
EL 69% 14 1 0 1 1 82% 63% 8 3 4 0 1 50%
EE 10 1 0 0 0 91% 10 1 0 0 0 91%
LL 40 3 3 1 1 83% 47 1 1 1 3 89%
LE GOOD3 ™o 1 1 oo [91% |93 T8 [0 [00][o0[100%
EL 4 0 0 0 0 100% 16 2 0 0 2 80%
889 889
EE % 5 0 0 0 0 100% % 4 0 0 0 0 100%
Overall 73% 76%

For G1 and G2 in F, efficiency is very high, between 82% and 100%,

whenever an “early” subject (EE or EL) has the highest valuation. These subjects
also frequently steal the goods that a “late” subject (LE or LL) should obtain. This
decreases dramatically the efficiency in those cases to levels in the 46% to 62%
range. Once we reach G3, most early subjects have already obtained a good. The

presence of overbidders is not as widespread as in G1 and G2 so their competition is
not as fierce, resulting in extremely high efficiency levels (83% to 100%).

The analysis is similar in S: high efficiency in G1 and G2 (75% to 91%) when

an early subject (EE or LE) has the highest valuation and much lower efficiency

(44% to 67%) when a late subject (EL or LL) has the highest valuation. Again,

efficiency is uniformly high in G3 (80% to 100%).

10 [ndeed, if each subject sometimes overbids and sometimes not, whenever a subject
overbids he will be more likely to win G1 or G2 and therefore be classified as an E. However, if that
were the case, there would be no reason why that subject would also overbid consistently and
significantly more than the other subjects also in G3.
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Overall, the efficiency analysis also supports the self-selection hypothesis.
Despite the fact that E subjects exhibit the same amount of overbidding in G3 than in
G1 and G2, the efficiency in G3 is dramatically increased. This can only be explained
by the fact that most E subjects have already obtained a good and therefore do not
participate in the auction of G3.

Payoffs

The last step of our analysis consists in studying the winner’s payoffs in each
cluster. We follow the same methodology as we did for overbidding and present a
table of average payoffs across goods and mechanisms, separately for each cluster
(Table 9).

Table 9. Average payoff of winner per cluster in tokens

EARLY-EARLY EARLY-LATE LATE-EARLY LATE-LATE Total Theory
Good First | Second | First | Second | First | Second | First | Second | First | Second All
(E) (E) (E) (L) (L) (E) (L) (L)
1 -13.8 -0.7 4.2 16.8 0.5 12.4 1.4 13.5 -0.9 10.7 4.9 27.0
2 -14.1 9.6 0.5 18.7 5.2 9.6 -3.6 7.8 -3.7 10.3 3.3 25.0
3 -11.2 26.3 -9.2 26.3 43 20.2 3.4 23.3 1.8 23.8 12.8 20.0
Avg. -13.5 7.2 1.3 22.4 3.4 12.4 0.7 16.5 -0.9 14.9 7.0 24.0

The results in F are stark. Early winners incur in either severe losses (EE) or
small gains (EL). They seldom reach G3 but when they do, they still overbid and
lose substantial money. Late winners (LE and LL) avoid losses but they still do not
obtain high payoffs for two reasons: because they still (moderately) overbid and
because their rivals overbid. The difference between clusters is most significant in
G3 where EE and LE lose 10 tokens on average whereas EL and LL, who face early
winners less frequently, win 4 tokens. Overall, for the most rational bidders,
patience pays off: contrary to the theory, earnings in G3 are higher than in G1 or G2
due to the self-selection effect.

Results are slightly more mixed in S. On the one hand, the tendency of late
winners (EL and LL) to overbid less than early winners (EE and LE) implies that the
former obtain larger gains than the latter: 22.4 and 16.5 vs. 7.2 and 12.4. On the
other hand and contrary to F, patience pays off for all subjects: in all four clusters,
the highest profits are obtained in G3 under S (and these gains are typically higher
than predicted by theory). This counterintuitive result has a simple explanation. In
G3 there are only two bidders, so if an EE or LE wins the good over an EL or LL, his
bid is irrelevant for payoff purposes since he will pay the price set by his rival’s bid.
In other words, in G3 mistakes of the form of overbidding are less costly under S
than under F, and this is reflected in the gains of “early” subjects in G3.

Summary

The cluster analysis of this section suggests that two effects contribute to the
insufficient distinction in bidding behavior across goods and mechanisms. First and
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as extensively documented in previous experiments on auctions [1], there is
evidence of bounded rationality. Subjects have problems realizing the distinction
between first and second price auction, and the corresponding differences in
optimal bidding behavior. We show that this problem is most severe in G1 and G2
but persists in G3, despite the different composition of the subject population.
Second and more interestingly, we emphasize a selection effect across goods.
Subjects who obtain the good early tend to severely overbid in all goods, including
the last one. They also steal goods, lowering the allocation efficiency and decreasing
the aggregate payoffs when their type is prevalent (first and second good) but less
so when their type is less common (third good).!!

Conclusion

In this paper we have provided a simple framework to study sequential
auctions with capacity constraints. We have identified a novel self-selection effect,
whereby irrational overbidders obtain early good(s) and exit the auction, leaving
the most rational ones (and maybe also the underbidders) competing for the late
good(s). In this setting, the patience of rational bidders pays off: both the efficiency
and the payoff of the winner are higher for the last good than for the first two. The
setting may not be appropriate to capture markets with highly experienced bidders
or markets with a continuous flow of entry and exit of bidders. By contrast, it is
highly suitable for markets with a fixed number of capacity constrained, moderately
experienced players.

The self-selection result raises a number of theoretical and experimental
questions. First, it would be interesting to develop a behavioral theory of boundedly
rational bidding in markets with capacity constraints. Indeed, mistakes are not
equally costly if they take the form of under- or over-bidding. Their relative cost and
the efficiency consequences are also different in first- and second-price auctions. As
aresult, the best response of rational bidders to this boundedly rational behavior
will also depend on the composition of over- and under-bidders in the population as
well as their likelihood to exit early. Second, it would be instructive to extend the
framework to the case where goods are drawn from different distributions. It is a
priori unclear if the departures from equilibrium behavior will be exacerbated if the
“best” goods (those drawn from H(v;), with H(v;) < G(v;) for all v;) are offered early
and the “worst” goods are offered late or vice versa. It also raises interesting
questions for the auctioneer. Should a profit-maximizing seller start or end with the
best goods? How does this depend on the fraction of overbidders in the population?
Finally, our experiment has only 8 rounds leaving little room to our subjects for
learning to bid optimally. It would be interesting to determine if in an experiment
with more rounds (say, 20 or 30) overbidders learn the costs of their behavior and
converge over time to the equilibrium strategy. This and other related questions will
be the object of future investigation.

11 Note, however, that the self-selection of subjects is not uniform across mechanisms.
Indeed, 36% of our subjects are “stealers” in one mechanism but not in the other (LE and EL).
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Appendix A: Proofs of Propositions 1 and 2

First-price auction. Consider period t ( < T). Consider agent i with T-t + 1

opponents. Valuations are independently drawn from distribution G(.) in [v, V].
Agent i anticipates that agent j # i bids b¢(v;) where by(.) is a monotonic increasing
function (the same for all j).
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If i announces b; and gets the good, his surplus is v; - b;. If he does not get it,
his surplus is V¢, the value of going to the next round (¢ + 1). The utility of i is then
given by:

uf(v;, by) = (v; — b)G (b7 (b))

T—-t+1

+Ver |1 G (b7 (5)

T—t+1] (10)
Bidder i chooses b; such that aibi uf (v;, b;) = 0. Differentiating uf (v;, b;) with
respect to v; and using the previous optimality condition, we get:
dut  out _ T—t+1
i:a_’:;: G(b'(by) >0 (11)

dv;

We assume that in each round one good is allocated with certainty (which is
true if we impose no restrictions on bids). At equilibrium, v never gets the good in
that period. Therefore, the utility of a bidder with valuation v is V¢.;. Overall,

uf (v, be(v) = [} G(8) ™ ds + Vs (12)

Then, for all v; > v, the optimal bid is given by:

v

(vi = be(W))G W)™ + Veyq[1 = G0~ = f iG(S)T_tdS +Via

<

f;i G(s)T-t+1gs
© b(v) =vi — = — Ven (13)

which means in particular that b, (g) = v — V;41. This equilibrium implies a
positive bid (b, (g)> 0) aslongas v > V,,4 (in the numerical application of the

experiment, we make sure that this condition is satisfied so that the non-negative
bid constraint is not binding). The equilibrium utility is:

uf W) = [} ()" ds + Ve (14
And the continuation value is:

Vi=Vip1 + fff,,vi G(s) " dsg(v)dv; > Viyy (15)
Integrating by parts, we get:

Vi=Vip1 + ffG(vi)T_t+1dvi - ffc(vi)T_t+2dvi (16)
which, using a recursive argument, implies:

Ve=Vry + ffG(Vi)dUi - ffG(vi)T_szvi (17)

Notice that, by definition, V-, ; = 0 since it represents the continuation payoff
of not getting the good in period T (the last one). Therefore:

Ve = f;G(Ui)dUi - f;G(Ui)T_HZdUi (18)

Finally, inserting the continuation value V,,, into the utility uf (. )we get:
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uf(v) = ffG(vi)dvi - fZG(s)T‘”lds (19)

Second-price auction. The proof for the second-price auction follows a
similar line (it is straightforward to see that it is a weakly dominant strategy for
subject i to bid his modified valuation bf = v; — V;,,). Finally, notice that both
auction formats yield the same expected utility to bidders and therefore also give
the same expected revenue to the seller.

Appendix B: Instructions

You!2 are going to participate in an experiment in which you will have to
make decisions in groups, and you will be paid in cash at the end of the experiment.
Each participant may obtain different amounts due partly to its own decisions,
partly due to the decisions of others, and partly due to the luck of the draws. The
experiment is computer based and all the interactions among participants will be
through the PC. It is important that you do not talk and that you do not try to
communicate with other participants throughout the experiments.

We will start with a short period of instructions, in which you will be
instructed on the rules of the experiment, and you will be taught on how to use the
computers. It is very important that you pay close attention. If any questions arise,
raise your hand and the answer will be given out loud for everyone. If any doubts
strike your mind, raise your hand and [ will help you with the computer.

At the end of the session, you will be paid according to just one of the 8
rounds that cover the experiment, chosen at random, plus an additional 2 euros as a
participation reward. The payment will be performed on an individual basis and in
private. You are not obliged to disclose whatever you have obtained.

The earnings during the experiment are measured in monetary units or
tokens. According to your decisions you may win or lose tokens. At the end of the
experiment, you will paid in euros according to an exchange rate of 1 euro for every
4 tokens that you have earned during the round that has been selected at random.

The experiment will consist of 8 rounds of auctions. In each round, you will
be randomly assigned to a group of 4 participants. You will not know the identity of
the other 3 participants of your group. Since you are 12/16 participants, 3/4 groups
will be formed in each round. Your reward depends exclusively on the decisions of
the participants of your group and on the luck of the draws. Whatever happens on
the other groups does not affect to your rewards, neither your behavior will affect
the results on the other groups.

During each round, 3 goods will be auctioned among the 4 participants of
each group sequentially, that is, one-at-a-time, and each participant will be allowed
to buy just one of the three goods at stake. Therefore, at each round and for each

12 What follows are the instructions in English. The Spanish version, the one that was used, is
available upon request. The screenshots have not been translated.
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group of 4 participants, 3 of the players will get one good and the fourth player will
not get any. For each good at stake, only those participants that have not previously
obtained a good may bid.

Let’s now explain the rules of each round. At the beginning of each round, the
PC will assign each participant to a group with other 3 participants, For each good
being auctioned, the computer will assign a random valuation between 30 and 90
tokens. The interactive screen (Figure S6) will ask the participant to enter a bid,
which must be positive and less than 150 tokens, and press the confirmation button.

NUMERO DE PARTICIPANTE 2 |

INSTRUCCIONES:
CADA PARTICIPANTE SOLO PUEDE COMPRAR UN BIEN
HAY ARTICIPANTES
3 BIENE

N ALEATORIAMENTE ENTRE 3 ¥ 90
LAS PLLIAS DEEEN SER POSITIVAS

SUBASTA DE PRECIO MAXINO:
CANADOR: PARTICIPANTE CON LA NAYOR PLUA; LOS EWPATES SE RESUELVEN DE FORMA ALEATORIA
PREGI) DE CONPRA LA CANTIDAD DE LA PUJA MAS ALTA

1 de 2 Tiempo Restante 571

BEN 1 de
Tuvaloracite, enu.m. e 8508

IIYO0E UNA £UJA 20 UM |

Ronds Substa l Benohoo

1 PUANASALTA | Tom

Figure S6. Placing a bid

We are facing a sealed-bid auction, since the bids are anonymous and secret,
and there is a set period to time to submit the bid. That is why it is critical to remain
in silence.

Before submitting the bid, it is convenient to read the information on the
screen, to correctly identify the good being auctioned and to fully understand the
rules:

* 4 participants in each group and 3 goods per round

* The valuations are random between 30 and 90 tokens.

* The auction type currently under way: First Price and Second Price.
The peculiarities of each of the two types will be explained later.

The rest of the available information shown on the screen is:

* The round or period

* The remaining time to submit a bid

* The good that it is being auctioned out of the possible 3

* The history of the experiment, indicating the profit obtained per
round.
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If a participant has previously obtained a good, the screen is different (Figure
S7), just indicating the history, since the subject is not allowed to bid nor obtain a
second good.

NUMERO DE PARTICIPANTE .

INSTRUCCIONES:
0 EDE COMPRAR UN BIEN

CIONES S i ALEATORWMENTE ENTRE 3) ¥ €0
LAS PUILS DEEEN SER POSITIVAS

SUBASTA DE PRECIO MAXINC:
GANADOR: PARTICIPANTE CON LAMAYOR PUJA LOS EMPATES SE RESUELVEN DE FORNAALEATORIA
PRECIO DE COMPRA: LA CANTIDAD DE LA PUIA NAS ALTA

1 g 2 Tiempo Restante ¢

BEN 2 do

No puedes pujar por este bien porgue ya has obtenido uno

Tu benaNcio J0sTdado es 180

Ronda Subersts Beneticio
1 PLIANAS ALTA 389

Figure S7. Not allowed to bid as a previous winner

When the participants confirm their bids or their profits, a wait screen will
show up (Figure S8), screen that will disappear whenever each and every
participant press the correponding confirmation button.

Por favor, espere

Noeds Subasa Derefich
1 FUUAMAS ALTA .00

Figure S8. Wait screen

When all the bids have been submitted, the computer will assign the good to
the buyer or winner, whoever placed the highest bid. The price to pay in tokens will
depend on the type of auction mechanism of the current round:
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e Under First Price or Maximum Price, the Price coincides with the bid
placed by the winner.

* Under Second Price or Vickrey, the Price corresponds not to one’s own
bid but to the second highest bid.

The profit obtained by the winner or buyer is equal then to the value minus
the Price, being positive if the Price is lower than the valuation and negative if the
price is above the valuation.

Following you will see simple screenshots with examples that may show up
after the assignment of the good to the winner, screens that vary depending on the
auction mechanism and the participant is the winner or not.

The first screenshot (Figure S9) will be seen by the winner of a First Price
auction, and the profit is one’s own valuation minus one’s own bid.

NUMERO DE PARTICIPANTE

WSTRUCCIONE S:
CADA PARTICPANTE S0L0 PLEDE CONPRAR UN BEN
v PANTES

LAS VALORACIONES SE ASIGNAN ALEATORIANENTE ENTRE 259 ¥ 350
LAS PLUAS DEBEN SER POSITHAS

SUBASTA DE PRECIO MAXIN
GANADOR: PARTICIPANTE CON LAMAYOR PLUA, LOS EWPATES SE RESUELVEN DE FORMA ALEATORIA
PRECIO DE COMPRA LA CANTIDAD DE LA PUUA NAS ALTA

1 & 2 Tiempa Restania 918

BEN 1 de
Tuwkraaden e
Tupa e

El prack de compra ha sida

Tu eres el COMPRADOR

Tu banafich e 26 16.11

]

Aoaga Sutwsta I Beneicio

1 PULAMAS ALTA 18.11

Figure S9. Winner of F

The second (Figure S10) corresponds to a non-winner in a First Price
auction.
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NUMERO DE PARTICIPANTE 4

WSTRUCCIONE S:
CADAPARTICIPANTE SOLO PLEDE COMWPRAR LN EIEN
HAY & PARTICPANTES
HAY 3 HENES
LAS VALORACIONES SE ASIGNAN ALEATORIAMENTE ENTRE 230 Y 320
LAS PUJAS DEBEN SER POSITIVAS.

SUBASTA DE PRECIO MAXIMO:
GANADOR PARTICIPANTE CON LA NAYOR PLUA LOS EWPATES SE RESUELVEN DE FORMA ALEATORI
PRECIO DE CONPRA LA CANTIDAD DE LA PUUA WAS ALTA

Tiempa Restanh 005

1 @
BEN 1 de 3
Tu vakaradbn e 2047
Tu puja e 24000
El pracis 4 comera ha sids 307.24
Ta NO eres el comprador.
Tu denefidio as da 0.00
Confiemar I
Roeds Sutesta Barehch
1 PULANAS ALTA 00

Figure S10. Non-winner of F

The third screen (Figure S11) corresponds to the winner of a Second Price
auction, with its bid of 350 tokens and a Price to pay of 335 tokens, so the profit is,
given the valuation of 347.59, of 12.59 tokens.

NUMERO DE PARTICIPANTE ‘

NSTRUCCIONES:
CADA PARTICIPANTE SOLO PUEDE CONPRAR UNSIEN
HAY 4 PARTICIPANTES
HAY J BENES
LAS VALORACIONES SE ASIGNAN ALEATORIANENTE ENTRE 290 Y 330
LAS PLLMS DEEEN SER POSITHAS.

SUBASTA DE SEGUNDO PREQO (VICKREY):
GANADOR: PARTICIPANTE CON LA NAYOR PUIA LOS ENPATES SE RESUELVEN DE FORMA ALEATORIA
PRECI) DE COMPRA: LA CANTIOAD DE LA SECUNDA PLIANAS ALTA

Ronda
2 o 2 Tiergo Rectarks 356
HEN 1 de 3
Tuvalorackn fus urm
Tu puga e asa 00
El praco 0a compra hi sk0 AEm
Ta eres el COMPRADOR
Tubenefaoes de 1298
Confiemar
Renda Subasty Banetcio
1 PLUAWLES ALTA e
2 SEGUNDAPUJANASALTA 125

Figure S11. Winner of S

The fourth screenshot (Figure S12) corresponds to a non-winner of a Second
Price auction, with a bid of 250, and a Price of 335 tokens.
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NUMERO DE PARTICIPANTE

NSTRUCCIONE S
CADA PARTICIPANTE SOLO PUEDE CONPRAR UNEIEN
HAY 4 PARTICIPANTES
HAY 3 BENES
LAS VALORACIONES SE ASIGHNAN ALEATORIMMENTE ENTRE 250 Y 330,
LAS PUUAS DEEEN SER POSITMAS.

SUBASTA DE SEGUNDO PREQO (VICKREY):
GANADOR: PARTICIPANTE CON LANAYOR PUIK LOS ENPATES SE RESUELVEN DE FORMA ALEATORI,
PRECI) DE COMPRA: LA CANTIDAD DE LA SECUNDA PUIANAS ALTA

2 o 2 Tiereo Restarts 333

HEN 1 oe 3
Tuvalorackn fus e
Tu puga fue 3T
El praco 04 compea N 5430 IEM

T NO eres &l comprador.

Tu benetck; os de 100

|

Renda Subasty Banetcio
1 PLUA WS ALTA 0o
SEGUNDAPUJANAS ALTA 0.00

Figure S12. Non-winner of S

The last screen (Figure S13) shows the history of the profits for a participant
that cannot bid.

NUMERO DE PARTICIPANTE X

NSTRUCCIONE S
CADA PARTICIPANTE SOLO PUEDE CONPRAR UNEIEN
HAY 4 PARTICIPANTES
HAY 3 BENES
LAS WLORACIONES SE ASIGNAN ALEATORIANENTE ENTRE 290 Y 330,
LAS PUUAS DEEEN SER POSITIAS.

SUBASTA DE SEGUNDO PREOO (VICKREY):
GANADOR PARTICIPANTE CON LA NAYOR PULIA LOS ENPATES SE RESUELVEN DE FORMA ALEATORIA
PRECI) DE COMPRA: LA CANTIOAD DE LA SECUNDA PUIA NAS ALTA

Randa
2 o 2 Tiemgo Restarnts 357

BEN 2 o 3
No puedes pujar por este bies porque ya has obienids uno

Tu berefao xumulad) es 129
Confiemar
Renda Subasty Benetcio
1 PLIAWE ALTA 19.
SEGLNDAPUJANATALTA 2%

Figure S13. History of profits

Obviously the numbers are factitious since they are not within the allowable
range for this experiment, since the valuations will be between 30 and 90 for
everyone.

As a summary, each round is composed of the following stages:

* Assignment of participants to groups
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* For each group:

o Auction for Good 1 of 3: Placement of 4 bids and assignment to the
winner

o Auction for Good 2 of 3: Placement of 3 bids and assignment to the
winner

o Auction for Good 3 of 3: Placement of 2 bids and assignment to the
winner

o Presentation of profits in tokens after each good and auction

At the end of each round, the following screen (Figure S14) will appear,
asking to wait for instructions:

Se ha acabado esta ronda. Espere instrucciones

Por favor, espere

Figure S14. End of round

8 rounds will be played, the first 4 will be First Price/Second Price and the
last 4 will be Second Price/First Price. A practice round will be performed first.

At the end of the experiment, after the 8 rounds, one round will be selected at
random to convert the tokens obtained in that round in euros. Once the round is
select, [ will individually and secretely pay in euros at a conversion rate of 1 euro
per 4 tokens. 2 additional euros will be payed to each individual to cover the
participation.

We will now start the experiment. Please follow the instructions that I will
dictate out loud.



